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ABSTRACT  

Many blasting applications in the mining industry demand that the hard rock 

being blasted remains structurally competent.  For example, pre-splitting is a common 

technique to reduce fracturing, and operators of dimension stone quarries use this blasting 

method to eliminate overbreak.  When pre-split design parameters are not applied 

correctly, there will be a redistribution of stresses within the rock, resulting in Blast 

Induced Rock Damage (BID).  Advances in geophysical technology are enabling blast 

technicians to monitor BID and then use the results to correctly design their blasts.   

The Multichannel Analysis of Surface Waves (MASW) geophysical method is 

new technology that is applied in many industries to determine the structural integrity of 

the subsurface.  However, it has never been applied to monitor and quantify BID.  

Nonetheless, the author of this research intended to determine whether the MASW 

geophysical method can be applied on a large scale in surface mining by quantifying the 

amount of BID that is produced from pre-splitting and comparing this BID to rock mass 

competency, and high-wall stability.  The author did so by performing a series of pre-split 

shots at a sandstone dimension stone quarry.  Pre and post blast MASW surveys were 

gathered and compared to determine the extent that unwanted damage was occurring 

from the pre-split at specific depth intervals from the split line.   

 The MASW method will produce high resolution data when it is used in optimal 

conditions.  However, geological anomalies that are typical at mine sites prevent accurate 

MASW data to be processed with high resolution.  Therefore, MASW is not applicable to 

monitor BID produced from pre-splitting with precision.  However, MASW is capable of 

collecting detailed information at mine sites when it is performed on a large scale and this 

research shows that it will identify zones where the stone has been disturbed from the 

blast at depths several meters from the split line which compromises the structural 

integrity of the remaining rock mass and negatively influences the outcome of later shots 

performed in that area.  This research generated recommendations for work that could be 

done to further utilize the MASW method as it was intended for. 
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1. INTRODUCTION 

When applicable, the use of explosives allows the mining industry to swiftly, and 

effectively complete a job.  When blasting techniques are properly used, the job becomes 

more safe and economic than any other excavation method.  In turn, engineers are able to 

make a large net value of the product that is blasted.   

Occasionally in conventional blasting, the explosive has been misused in such a 

way as to destroy the quality of the remaining rock.  The explosive energy penetrates far 

into the rock, and the resulting systems of cracks result in overbreak [Kihlstrom, 1978].  

Though the competence of the stone depends on the geology of the region -- free from 

joints and intrusions -- the blaster does have some control over fractures induced by 

explosives. Many applications demand that the hard rock being blasted remain competent 

and keep its structural integrity.  For example, pre-splitting and smooth-wall blasting are 

common techniques to reduce fracturing, and operators of dimension stone quarries use 

these blasting methods to eliminate overbreak.  The stone that is separated from the rock 

mass in a dimension stone quarry is defined as a loaf.  In order to gain saleable product, 

the blast must not compromise the strength of the rock. The loaves that are being 

extracted and the rock mass left behind (to be blasted at a later time) must have minimal 

damage.  Careful control of the loaf shot is vital; overshooting can fracture the entire loaf 

and ruin several thousand tons of product [Lownds, 2000].   

To prevent unwanted damage in blasted stone, every shot must be designed 

correctly.  To understand how the blasted rock is affected by the explosives, engineers 

and blast technicians have performed research studies to obtain tomographic images of 

the blasted material at specific depth intervals from the borehole location where the 

explosives were placed.  Tomography is imaging by sectioning, by using waves of energy 

[Tomography, 2010].  Tomographic images are commonly obtained by performing 

seismic wave field studies using geotechnical equipment.  The tomographic images are 

then processed and analyzed to obtain information about the structural integrity of the 

subsurface at specified depth intervals into the material.   
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The author of this research project used the Multichannel Analysis of Surface 

Waves (MASW) geophysical method to obtain tomographic images of the subsurface 

before and after a pre-split shot in a sandstone dimension stone quarry.  This geophysical 

method is commonly applied in the mining exploration industry, but it has never been 

used to monitor and quantify unwanted damage in blasted stone.  The MASW data were 

examined and compared to interpret the extent to which the explosives had damaged the 

stone from the split line at specific depth intervals.  The main objective of this research 

experiment was to determine whether or not the MASW method could be applied to 

monitor the damage that explosives used in pre-splitting induce on the remaining stone 

once the loaves have been extracted from the shot area.  The tomographic data generated 

from the MASW software would also quantify the damage at specific depth intervals into 

the rock mass from the borehole locations where the explosives were placed. 

The MASW geophysical method is a relatively new technology, and applying it to 

monitor and quantify Blast Induced Rock Damage (BID) from pre-splitting in a 

dimension stone quarry is “ground-breaking” work.  In addition, the set-up parameters 

that are presented in this project have not been attempted before this work.  As such, no 

published baseline data were available, so all of the information had to be obtained by 

performing tests.  Fortunately, the author was able to do these tests on a large scale in an 

operating sandstone dimension stone quarry.  The information was gathered in a real 

situation and saleable production stone was acquired after each blast.  This made the field 

work more interesting and applicable to the surface mining industry.  However, because 

geology is a major factor in blasting, the author had to make some adjustments in the 

blast design and set-up parameters to both accommodate and take advantage of the 

geological variability present in the sandstone quarry.  The author approached this work 

with no preconceptions of outcomes, considering the unique nature of the experimental 

location’s geology as well as sources of variation and error that were present in the 

MASW process.  From this study, the author developed conclusions regarding the work 

performed and generated recommendations for work that could be done to further utilize 

the MASW method as it was intended for.   
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2.  REVIEW OF THE LITERATURE  

To better understand the direction of this thesis project, the author conducted a 

literature search for material related to pre-split blast design including shock wave theory 

and velocity of detonation.  The conventional blasting techniques that have been used in 

pre-splitting applications and in the mining industry for many years were also reviewed.  

Several recent experiments performed by Explosive Engineers to improve dimension 

stone mining were also researched.  This search made it evident to the author that 

Explosive Engineers have dramatically improved blast designs within the past several 

decades, and that blasting has evolved from an art into a scientific discipline.  In addition, 

advancements in geophysical technology were investigated that enable Explosives 

Engineers to mitigate Blast Induced Rock Damage (BID) that occurs during the shot 

using seismic wave travel time.  The MASW method was studied to learn how it works, 

its common applications, its field requirements and equipment, and its limitations.   The 

following review of relevant literature explains the science behind the work: 

 

2.1. DIMENSION STONE BLASTING DESIGN  

A typical quarry shot design has multiple rows of holes.  Explosives are packed 

into the holes and detonated in order to fracture the rock throughout and displace the 

fragmented stone in a muck pile, away from its original resting place.  The detonation of 

explosives produces shock pressures that radiate outward and break the rock mass to a 

more desirable size.  In the case of dimension stone, the goal is not to fracture the rock 

throughout, nor to throw it away from the deposit into a muck pile.  Dimension stone 

quarries aim to split the rock into manageable sized blocks without compromising the 

integrity of the stone itself.  Dimension stone companies typically work with hard rock, 

such as marble or granite, and are dedicated to producing aesthetically appealing stone 

that is to be used in architecture and sculptures.  Dimension stone is not limited to granite 

and marble, however.  For example, sandstone can be resistant to weathering, yet it is 

easy to work with. These qualities makes sandstone a common building material; to 

acquire large blocks of sandstone by means of dimension stone blasting is not 
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uncommon.  Blast technicians use pre-splitting in these quarries to create a smooth cut 

where machines will be able to later enter the site, and extract the loaf from the deposit.   

Because the blast expands in every direction, blast technicians must apply special 

techniques to ensure the stone is split only in line with the design while the rock’s interior 

structural integrity is preserved.  Certain “rules of thumb” (Table 2.1) apply when 

engineers design a pre-split or smooth wall blast.  Though they cannot be applied in every 

situation, these “rules” offer a good starting place and are quite reliable. 

 

Table 2.1:  Pre-split “rules of thumb” [Worsey, 2006]. 

Maximum Depth 250 x hole diameter 

Spacing 10 x hole diameter 

Minimum Burden  30 x hole diameter 

Specialist Pre-split Charge Diameter 1/4 x hole diameter 

Stemming 

(Changes when boreholes are drilled at a shallow depth) 

25 x hole diameter 

 

 

Every design aspect is significant when creating a pre-split shot:  hole diameter, 

burden, spacing, timing, charge weight, and confinement.  Precision drilling and blasting 

requires the blast holes to be closely spaced and relatively small in diameter (3.18 cm (1 

¼”)).  Larger diameters allow wider spacing and deeper holes, but the resultant split will 

not be as smooth and BID will radiate further into the stone [Worsey, 2006].   

A standard explosive used in this type of blasting is detonating cord with nominal 

charge weights of 1.5, 3.6, and 8 grams/meter (7.5, 18, and 40 grains/foot).  This is a 

significantly smaller amount of explosive than one would see in a typical quarry shot.  
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Detonating cord fires at a high velocity of detonation which causes high pressures within 

the borehole during initiation.  This pressure causes the pre-split to propagate between 

holes, and separate the loaf from the deposit.  Moreover, because detonating cord has a 

small charge weight and diameter, it produces little damage to the surrounding stone 

when it is used correctly. 

The charge weight of explosives used should be varied depending on the geology 

of the blast area.  Some stone is more brittle (e.g., granite) than others and will split away 

from the rock mass very easily.  However, some stone is very porous and the shock wave 

and gas pressures created by the explosive are absorbed by the stone.  In porous stone, the 

desired split may not be achieved as easily.   

Another blasting problem influenced by geology is when there are fractures or 

joint sets in the shot area.  The gas pressures produced from the explosives will escape to 

these void areas, the pressure in the blast hole is decreased considerably, and the split will 

not be achieved. 

 The two geologically-influenced problems described above are common in 

sandstone dimension stone quarries.  This sedimentary rock is deposited in layers and 

often has mud seams present throughout.  In addition, it is porous and very absorbent.  

Joint sets, seams and fractures are characteristic in sandstone as well.  Due to these 

conditions, the blaster must pay close attention to the charge weight, loaf orientation, and 

the hole diameter in order to achieve a good split. 

 These problems can be solved by following the “rules of thumb” mentioned 

above regarding charge weight diameter and/or increasing the confinement in the blast 

hole.  This in turn will cause the pressure in the blast hole to be increased during the shot.  

Crushed stone, sand, and water are common stemming materials that are used in these 

instances to increase the confinement.  Stemming is also very important to reduce air 

blasts and surface cratering [Worsey, 2006].   

  Stone deposits have compressive stresses pushing from every direction.  The 

correct spacing is needed for the split to propagate and break the loaf free.  Otherwise, the 

explosives will not have the strength to split the rock.  In turn, all the energy will be 
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wasted by blowing the stemming into the air rather than splitting the rock.  To utilize the 

energy created from the explosive, it is necessary for the row of holes to have relief in 

order for the pre-split to be successful and split the loaf away from the rock mass.  The 

blaster must locate the row of holes correctly spaced and in line with an existing split or 

connect the row of holes perpendicular to a free face. 

2.1.1.  Sequential Timing Delays.  Pre-splitting of rock in closely spaced holes 

works best when the holes fire nearly simultaneously.  Figure 2.1 represents the different 

results that occur when detonators are fired independently versus instantaneously.  When 

the detonators were fired separately, a rough split was produced and excessive radial 

fracturing resulted around every hole at lengths approximately equal to the spacing 

between detonators.  When the detonators were fired simultaneously, the resultant split 

was very straight and radial fracturing was minimized.  This experiment was performed 

in plexi-glass, and though the effects would be different in rock, it is evident that firing 

instantaneously is superior.   

 

 

Figure 2.1:  Blasting experiment in plexi-glass [Kihlstrom, 1978]:  A) Independent shots; 
B) instantaneous shots. 
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Quick initiation allows the stress fields from adjacent holes to interact and makes 

the cracks propagating parallel between the holes the dominant split.  Moreover, radial 

fracturing occurs as unwanted cracks propagate outward -- perpendicular to the desired 

split line.  The goal of pre-splitting is to minimize radial fracturing to preserve the 

structural integrity of the blasted material.  However, the stress fields take a finite time to 

be established because the stress waves travel at a finite velocity.  Cracks from the first 

hole fired cannot be influenced by the next hole fired until the stress wave traveling 

backwards from the second fired hole fired meets these cracks.  When this happens, the 

cracks become one and tend to form a smooth split in line with the row of holes [Lownds, 

2000].   

A study of sequential timing in pre-split design was performed at a granite 

dimension stone quarry by Lownds [2000].  At this quarry, the normal spacing between 

holes to achieve good splitting was 14 cm (5.5”).  The velocity of crack propagation 

through hard rock was not measured in Lownds’ test, but it was assumed to travel at 1 

mm/µs.  With this information, it was determined that the best timing sequence the 

granite quarry should use in their pre-split designs was 20 µs between holes.  Figure 2.2 

shows specifically why this timing sequence works. 

The cracks from the first hole fired will propagate uniformly in all directions until 

the stress fields interact, after which the splitting crack is dominant.  During this time, the 

severity of cracks that deviate away from the split depends on the pressure in the holes.  

Higher pressures will cause more cracks to develop.  Ideally the explosive induced stress 

should be just enough to propagate two cracks from each hole (forward and backward 

with respect to the direction of the drilled row of holes).  When the stress is too great in 

the rock, there will be extra energy that will drive cracks away from the split line and 

compromise the integrity of the stone [Lownds, 2000].   

When an explosive detonates, the shock waves travel at speeds specific to the 

media through which they are traveling.  Each type of rock has unique physical 

characteristics.  Compressive shock waves will travel at high speeds through competent 

matter [Lownds, 2000].  Conversely, they will travel slower through fractured material.  

To achieve smooth splitting, the velocity of the compressive waves through the stone, the 



www.manaraa.com

8 
 

 
 

velocity of crack propagation, and the velocity of detonation should be incorporated into 

the design if possible. 

 

 

Figure 2.2:  Velocity of crack propagation from pre-splitting in granite [Lownds, 2000].   
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2.2.      COMPARISON OF BLAST PRESSURES FROM HIGH VELOCITY   
 DETONATING CORD THROUGH DIFFERENT COUPLING MEDIAS   
 

During a pre-split shot, the severity of radial fracturing that deviate away from the 

split depends on the pressure in the holes [Lownds, 2000].  Cold Springs Granite is a 

company in the Northwestern United States that specializes in dimension stone mining.  

At the turn of the millennium, Explosive Engineers completed several tests that studied 

different techniques to characterize and quantify the shock pressure created by pre-

splitting, using detonating cord as the primary explosive.  The quarry’s standard blast 

procedures were applied, but a second parallel row of holes was drilled and commercial 

tourmaline pressure gauges were suspended in water in each of them (Figure 2.3).  

Pressure magnitude-duration graphs were then produced from the data acquired by the 

instrumentation [Lownds, 2000]. 

 

 

 

Figure 2.3:  Cold Springs test set-up [Barkley, 2001]. 
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The Cold Springs’ study also tested five different types of coupling media in the 

blast holes.  The goal was to determine which media would allow the explosive to 

adequately break the loaf away from the rock mass, but also absorb the pressure wave 

enough to preserve the stone’s integrity.  The five media were air, sand, water, and two 

B-Gel compositions developed by Viking Explosives & Supply, Inc.  The pressure traces 

within each group of replicates displayed significant variation, but they were nevertheless 

reproducible enough to show important differences between the various explosive 

charges and fill media in the holes [Lownds, 2000].   

This experiment determined that a split will not be achieved in granite unless a 

pressure of at least 1 MPa is maintained for the first 80 microseconds.  Pressures higher 

than 2 MPa during the first 40 microseconds were not needed, and contribute to blast 

damage.  Any significant pressure after 100 microseconds was unnecessary and probably 

would cause unwanted damage after the split was achieved [Lownds, 2000].   

 

2.3. COMPARISON OF BLAST PRESSURES FROM LOW VELOCITY 
 DETONATING CORD THROUGH DIFFERENT COUPLING MEDIAS   

Unwanted damage is caused by the quick release of energy and pressure that 

explosives produce.  Cold Springs Granite believed that by reducing the detonation 

velocity of the cord, the pressure within the borehole would be reduced as well.  A new 

concept in detonating cord manufacturing has provided a radically different performing 

explosive.  The explosive powder in the cord is mixed with other low strength and inert 

materials to reduce the detonation velocity [Product Manual, 2005].  This new Cord (LV 

cord) has reduced the velocity of detonation by approximately 30% (Table 2.2).  The LV 

cord has a lower and longer sustained pressure pulse.  In addition, it develops more gas 

than conventional cords.  At the same time it maintains all of the handling and reliability 

advantages of conventional detonating cord and may be manufactured at the same 

nominal charge weights as the high velocity (HV) cord [Barkley, 2001].  Cold Springs 

decided to perform tests with an identical set up procedure that they used previously with 

HV cord, except that this second experiment would study LV cord in addition to HV cord 

[Barkley, 2001]. 
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Table 2.2:  Comparison of high velocity cord to low velocity cord [Barkley, 2001]. 

 HV Cord LV Cord 

Velocity of  Detonation 6,700 m/s (23,000 fps)  4,700 m/s (15,400 fps)  

Detonation Pressure 9.19 x 106 kPa (1.33 x 106 

psi)  

4.19 x 106  kPa (608,000 

psi)  

 

 

Cold Springs examined the blocks of granite after both of these experiments.  By 

simply searching for surface cracks and measuring their lengths, Cold Springs concluded 

which explosive and stemming combination worked best (Table 2.3).  No interior damage 

was measured or analyzed.   

 

Table 2.3:  The cracks present on the surface of a loaf using LV cord compared to the 
cracks present on the surface of a loaf using HV cord [Barkley, 2001]. 

 Maximum 

Crack 

Length 

(cm) 

Minimum 

Crack 

Length 

(cm) 

Average 

Crack 

Length 

(cm) 

Number of Stickers [Cracks 

longer than 15.2 cm (6”)] 

per slab 

LV Cord 22.1 (8.7”) 3.6 (1.4”) 4.8 (1.9”) 2.6 

HV Cord 51.1 (20.1”) 4.1 (1.6”) 12.2 (4.8”) 7.5 

LV/HV 0.4 0.9 0.4 0.3 

% Change -60% -10% -60% -70% 
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2.4. VELOCITY OF SEISMIC WAVES THROUGH FRACTURED AN D 
 UNFRACTURED STONE 

Blast Induced Rock Damage (BID) is a concern in mining because it contributes 

to a redistribution of stresses within rock, resulting in rock mass strength weakening from 

resultant blasting fractures.  Measurement of BID can thus be a useful tool to help refine 

blasting techniques for reduced rock fracturing [Iverson, 2009].  Tomography is imaging 

by sectioning, using waves of energy to generate information of a material at specific 

depth intervals.  The mining industry has been using tomographic imaging and seismic 

data frequently for the past few decades to study stress distribution and fracturing within 

rock masses. Specifically, this process has been used to maintain safe working conditions 

in underground mines [Iverson, 2009].  BID may be determined by measuring the 

velocity of seismic wave energy and to generate tomographic images of blasted stone.     

High resolution seismic methods have the potential to assess the extent of BID by 

analyzing P-wave velocity variation with depth into a rock mass. P-waves are 

compression waves observed in elastic media. The P-wave velocity increases with 

increasing consolidation of material and decreases with fracture density [Iverson, 2009].  

By measuring P-wave velocities in a single rock type, one should be able to determine 

that specific rock’s consolidation and/or structural integrity as a function of depth.  These 

waves recorded before a blast, compared to waves recorded after a blast, will determine 

the extent of the BID. 

A group of engineers from the University of Montana studied seismic refraction 

travel time tomography as an inversion method for estimating P-wave velocities to 

ultimately quantify BID in a concrete block.  Variation of P-wave first arrival times were 

used to iteratively update a grid of velocities over the surveyed area.  Their approach was 

to use seismic refraction travel time tomography to determine P-wave velocity as a 

function of depth into the concrete block [Iverson, 2009].  This survey was conducted on 

the concrete block before and after a blast was initiated.  By comparison of the pre and 

post blast P-wave velocities, the engineers were able to quantify the amount of BID 

produced from the shot.  The explosive used was Dyno AP emulsion. 
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To collect the P-wave velocity data, a line of holes was drilled horizontally into 

the concrete block to an equal and specific depth.  Engineers attached geophones and 

strain gauges on the end of stud anchor bolts that were driven into the holes which were 

then filled with an epoxy.  A small hammer with an electronic trigger was the source for 

the seismic data.  This trigger attached to the hammer and the bolt completed a simple 

circuit when the bolt was struck by the hammer.  The impact on the end of the bolt sent a 

signal to the system, which instructed it to begin recording.  The bolts also had an 

aluminum wedge attached to them to hold an accelerometer in place for accurate data 

collection.  Other recording equipment consisted of a Geode seismograph and compatible 

software to store the data on a laptop computer [Iverson, 2009].  The drill hole and 

instrumentation geometry is shown in Figure 2.4.  

 

 

 

Figure 2.4:  P-wave experiment drill hole and instrumentation set-up [Iverson, 2009]. 
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The Rayfract software was applied to produce tomograms which recorded P-wave 

velocity within the concrete before (Figures 2.5) and after (Figure 2.6) a blast.  The blast 

destroyed a large portion of the concrete block and therefore only half of the stud anchor 

bolt and geophone detector units were used in the post blast survey.  In addition, the back 

side of the concrete block was destroyed and the post blast survey could only generate 

data to a depth of 0.2 meters (approximately 8”).  The engineers then identified the low 

velocity zones related to BID by comparing the pre and post blast tomograms and 

determining the negative change in the P-wave velocity (Figure 2.7).  The areas that were 

most affected by the explosives were highly fractured, thus they had a larger negative 

change in P-wave velocity at that depth. 

   

 

Figure 2.5:  Tomographic imaging for a concrete block prior to a blast [Iverson, 2009]. 
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Figure 2.6:  Tomographic imaging for a concrete block post blast [Iverson, 2009]. 

 

 

Figure 2.7:  Comparison analysis shows the zones of the concrete block that were most 
affected by the blast due to the change in P-wave velocities [Iverson, 2009]. 
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2.5. GEOPHYSICAL METHODS  

Geophysics, a major discipline of the Earth Sciences, is the study of the whole 

Earth by the quantitative observation of its physical properties.  Geophysical techniques 

have been used by engineers since the mid 19th century, but recent advances in 

technology have enabled geophysics to be a very versatile science and have allowed it to 

be applied to many different situations.  As previously emphasized, many mining 

applications demand that the extracted stone remain structurally sound after the blast.  

The stone that is left behind (often to be blasted at a later time to produce additional 

saleable loaves, or to serve as a high-wall or portal entry) must remain competent as well.  

Iverson [2009] and the engineers at the University of Montana used geotechnical methods 

to quantify the BID that is produced by explosives that are commonly used in the mining 

industry.  The research performed by the author of this report further investigates BID 

that occurs when performing pre-split shots using a similar approach that was utilized at 

the University of Montana. 

The author of this research did not have access to either the tomographic imaging 

software or the geophysical instrumentation that was used by the group of engineers at 

the University of Montana.  Therefore, the author researched other geophysical methods 

that would obtain seismic velocity profiles of the subsurface at specific depths to translate 

the extent of BID in a pre-split shot.   

2.5.1.  Seismic Wave Research.  Seismic energy is produced by earthquakes or 

by other sources of near-surface disturbance such as an explosion, an automobile, or a 

sledgehammer impacting the surface.  Geophysical methods can use this seismic energy 

to generate information regarding the structural integrity of the subsurface [Anderson, 

2010].  Two types of seismic waves travel through the subsurface as a result of near-

surface impact:  body waves and surface waves.  When interpreting geophysical data, one 

must understand the difference between these two types of seismic waves. 

P-waves and Shear waves are the two types of body waves.  Each of these waves 

propagates three-dimensionally into the subsurface as it is generated.  P-waves travel 

faster than Shear waves and disturb the medium through which they travel by 
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compressing and extending the particles in the solid.  P-waves occur as vibrations parallel 

to the travel direction of the wave energy.  Conversely, Shear waves are body waves in 

which the disturbance is an elastic deformation perpendicular to the direction of motion 

of the wave.  The Shear waves that are generated from the source radiate spherically 

outward forming alternating compressions and rarefactions [Anderson, 2010].   

When seismic waves are generated at or near the earth's surface, surface waves 

are also generated.  These waves propagate radially in two dimensions away from the 

source.  Surface wave particle motion is confined essentially to the earth-air interface, so 

the shallow subsurface can be interpreted by analyzing surface waves.  One type of 

surface wave generated is referred to as a Rayleigh wave.  These waves are frequently 

used in non destructive testing (NDT) for detecting anomalies in the Earth’s subsurface 

because they generally have high frequencies [Rayleigh Wave, 2010].   

The frequencies of seismic waves travel through the subsurface at different speeds 

depending on the density of the material through which they are propagating.  The speed 

of waves in the Earth typically increases with depth from the surface due to 

consolidation.  The low frequency waves typically travel faster than the high frequency 

waves at the greatest depths.  Similarly, intermediate frequencies involve particle motions 

at intermediate frequencies and depths.  The highest frequencies travel slowest at the 

shallowest depths [Rayleigh Wave, 2010].  Geophysical equipment and software records 

the frequency and the travel time of seismic waves traveling through the subsurface and 

can thus relate the frequencies recorded to a depth [Anderson, 2010].  Ultimately, the 

seismic wave velocities with their associated frequencies can be transformed into a 

tomographic image of the subsurface, profiling depth vs. seismic wave velocity.   

Rayleigh waves have unique properties that allow them to be transformed into 

near-surface Shear wave velocity profiles [Surf-Seis, 2006].  The speed of Rayleigh 

waves is mostly a function of the Shear wave velocity of the medium through which they 

are propagating [Rayleigh Wave, 2010], thus engineers transform Rayleigh wave phase 

velocities into Shear wave velocity profiles of the subsurface with simple conversion 

calculations.   
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2.5.2.  Surface Wave Applications.  Rayleigh waves in the ultrasonic frequency 

range are used in NDT applications to help find cracks and other imperfections in 

materials.  There are many applications of surface waves in geophysical engineering.  

However, to determine the structural integrity of the subsurface material, it is only 

necessary to discuss how engineers have used surface waves to generate Shear wave 

velocity profiles.  This is done by inverting Rayleigh wave phase velocity to generate 

corresponding Shear wave data of the desired region.   

During the data acquisition phase, a seismic source is applied onto the earth's 

surface, and energy in the form of Rayleigh waves travels along the surface of the earth. 

Seismographs connected to geophones coupled to the earth’s surface record the 

magnitude and arrival time of surface wave energy.  Associated geophysical software 

converts the recorded information into images (shot gathers) which can then be converted 

into a dispersion curve.  This curve maps the Rayleigh wave phase velocity as compared 

to its frequency.  Rayleigh wave phase velocities are a function of both the Shear wave 

and the Compression wave velocities of the subsurface.  The inter-relationships between 

Rayleigh wave velocities (VR), Shear wave velocities (β), and Compression wave 

velocities (α) in a uniform medium are expressed in Equation 2.1 [Anderson, 2010]: 

 

VR
6 - 8β2VR

4 + (24 - 16β2 /α2)β4VR
2 + 16(β2/α2 – 1)β6 = 0  Equation 2.1. 

 

Equation 2.1 might initially suggest that it would be difficult to extract Shear 

wave velocity because the equation contains two unknowns (Shear and Compression 

wave velocities). Fortunately, this is not the case because Rayleigh wave phase velocities 

are influenced much less by changes in Compression wave velocity than by changes in 

Shear wave velocity.  Rayleigh wave velocity (VR) and Shear wave velocity (β) in a 

uniform medium are related by Equation 2.2 [Anderson, 2010]:  

 

β = VR/C         Equation 2.2. 
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The variable C is a constant that changes slightly depending on the Poisson’s ratio 

of the material through which the seismic waves travel.  Even in extreme variations of 

Poisson’s ratio, C only ranges from 0.874 to 0.955 [Anderson, 2010].  If a value for C is 

assumed, and the frequencies with their respective surface wave velocities are recorded, 

then a Shear wave velocity profile can be developed through analysis, and a velocity 

image of the subsurface can be generated [Anderson, 2010].  

 

2.6. MULTICHANNEL ANALYSIS OF SURFACE WAVES    

Multichannel Analysis of Surface Waves (MASW) is a relatively new 

geophysical method that was introduced to the industry by the Kansas Geological Survey 

at the turn of this century.  It applies the relationship between surface waves and Shear 

waves as explained above to ultimately generate a Shear wave velocity profile of the 

subsurface.  It has been commonly applied in mining exploration to determine the depths 

and thicknesses of the geological strata at a potential mine site.  It may also be applied on 

much smaller scales in the transportation industry to identify damaged areas on asphalt or 

concrete pavements with high resolution [Anderson, 2010].  A very similar method, 

Spectral Analysis of Surface Waves (SASW), has been employed by geophysicists for 

some time, but the MASW method has surpassed its counterpart by giving increasingly 

more accurate, and detailed information.  While SASW collects data using two detector 

units, the MASW method uses an array of 24 geophones to collect data.  This array gives 

geophysicists a more readily interpretable image of the subsurface [Anderson, 2010].  

Three types of MASW methods exist: Active, Passive Remote, and Passive Roadside.  

Each type of method has its advantages and limitations, but the general idea of all three is 

the same [Surf-Seis, 2006].  The two passive methods utilize surface waves generated 

from cultural (and natural) activities (e.g., traffic, thunder, tidal motion, atmospheric 

pressure changes, etc.).  The active method (Figure 2.8) is the most common type of 

MASW method. It is the conventional mode of survey using a sledge hammer, a dropping 

weight, and in some instances a small explosive detonation on the surface to generate an 

active seismic source that will gather field data [Surf-Seis, 2006].  This project uses the 

general layout scheme of the active method and the report discusses only its specifics. 
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2.6.1.  MASW Equipment.  Typical seismic acquisition systems consist of the 

following components:  

• Seismic Source -- This is nothing more than an apparatus for delivering seismic 

energy into the ground. When conducting the survey on soft ground, a metallic or 

rubber impact plate is recommended to help the source impact point become less 

intrusive into soil.  However if conducting the survey on stone ground, this is not 

needed.  Sources can vary greatly in their size and complexity.  All, however, 

share the following characteristics:  

o They must be repeatable.  That is, the nature of the energy delivered into 

the ground (its amount and the time duration over which it is delivered) 

should not change as the source is used in different locations.  Also, the 

source should be able to generate a vibration in the ground that will be 

able to be recorded by the resonant frequency of the chosen geophones. 

o Time of delivery of the source must be controllable.  Because first time 

arrivals of the surface waves are being recorded, the engineer must be able 

to tell exactly when the source delivered its energy into the ground (“time 

zero”).  In some cases, the time of delivery must be recorded manually by 

the field technician.  In others, an instrument records the time the source 

delivered its energy.  This is typically controlled by a lap top computer 

equipped with the appropriate software [Surf-Seis, 2006].  

• Geophones -- These are devices capable of measuring ground motion generated 

by the seismic source.  These typically convert the ground motion into electrical 

signals (voltages) that are recorded by a separate device.  Through research, low-

frequency (e.g., 4.5 Hz) geophones have proven to give the most accurate data 

and are used when mapping to very deep zones (10-30 meters (30’-100’)).  The 

effectiveness of somewhat higher-frequency phones (e.g., 100 Hz), however, is 

often comparable to that of much lower-frequency ones and are recommended 

especially if one is acquiring information about the shallow subsurface (1-6 

meters (3’-20’)).  Hence, the resonant frequency of the chosen geophones depends 

on what depth the field study is attempting to map.  Vertical (instead of 
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horizontal) phones must be used to acquire accurate data.  This means that the 

geophone must be placed vertically relative to the surface on which the source is 

discharged.  The Kansas Geological Survey recommends using spike-coupled 

geophones because they generally obtain the highest sensitivity in typical active 

MASW field geometries [Surf-Seis, 2006]. 

• Recording System -- This consists of a number of components.  In essence, this 

entire system does nothing more than record the ground motion detected by the 

array of geophones and stores the resulting data.  In addition to recording ground 

motion, this system must also control the synchronization of the source.  It 

consists of not only the seismograph to store information but also numerous 

electrical connections to the geophones, and usually a device to select subsets of 

the installed geophones to record [Surf-Seis, 2006].  

2.6.2.  MASW Field Geometry.  Similar to the type of equipment chosen, how 

the instrumentation is set up during a field study depends on the application and the data 

one is attempting to obtain from the study. 

The maximum depth of investigation that can be achieved is usually in the 10-30 

meters (30’-100’) range, but this can vary with sites, equipment set-up parameters, and 

types of active sources used.  Field procedures and data processing steps are briefly 

explained below [Surf-Seis, 2006]. 

The length of the receiver spread (D) in Figure 2.8 is commonly referred to as the 

array.  The array (Equation 2.3 [Surf-Seis, 2006]) is directly related to the longest 

wavelength (λMAX ) that can be confidently analyzed, which in turn determines the 

maximum depth of investigation (zMAX ):  

 

D = λMAX  = zMAX        Equation 2.3. 
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In practice, the maximum depth of investigation in an active survey is usually 

limited by the seismic source as it is the most influential factor.  On the other hand, the 

minimum receiver spacing (dx) is given in Equation 2.4 [Surf-Seis, 2006].  It is related to 

the shortest wavelength (λMIN) and therefore the shallowest resolvable depth of 

investigation (zMIN): 

 

dx = λMIN = zMIN       Equation 2.4. 

 

The source offset (x1) controls the degree of contamination by the near-field 

effects.  Equation 2.5 [Surf-Seis, 2006] suggests it to be a value of about 20% of D: 

 

 x1 = 0.2D        Equation 2.5. 

 

It is imperative to record clear and concise field notes when conducting these 

surveys.  When the shot gathers are taken back to the laboratory for analysis, the software 

requires the interpreter to supply the source offset location and distance away from the 

array as well as the geophone spacing used in the field geometry.  Without precise 

information, the final velocity profiles will be incorrect and meaningless. 

2.6.3.  Three Steps of MASW Process.  The entire procedure for MASW usually 

consists of three steps (Figure 2.9) [Surf-Seis, 2006]:  First the engineer must acquire 

multichannel records (shot gathers).  These records are then taken back to the lab and the 

fundamental-mode dispersion curves are extracted.  These curves represent the surface 

wave phase velocity of the shot gather versus the frequency generated from the impact 

source.  Finally, these curves are inverted to obtain two-dimensional profiles of the Shear 

wave velocity related to depth.  
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2.6.4.  Velocity Profile Processing.  The MASW geophysical method and its 

analytical computer software, Surf-Seis (Version 2.05), were developed by the Kansas 

Geological Survey.  Surf-Seis automatically interprets shot gathers collected by the active 

MASW method to develop a dispersion curve and a velocity profile related to each field 

log [Surf-Seis, 2006].  It is relatively simple software and displays results that are easily 

interpreted by the engineer.  To project a Shear wave velocity profile from the uploaded 

shot gathers, the engineer must input the field parameters used into the program.  

Depending on these parameters and the first arrival times of the Rayleigh waves, a 

dispersion curve is then generated that maps the surface wave phase velocity versus 

associated frequencies created from the impact source.  The extraction of dispersion data 

from field-recorded Rayleigh wave data is a standard, established mathematical process 

that does not require any interactive input from the interpreter [Anderson, 2010].  The 

analysis of the output dispersion data and the selection of optimum phase velocities, in 

contrast, requires qualitative input from the interpreter.  Hence, there is potential for 

human error [Anderson, 2010].  To minimize this potential, the interpreter must be 

experienced with the MASW method and record accurate field notes. 

The selection of optimum phase velocities from dispersion data is usually 

straightforward if good quality Rayleigh wave data are acquired in the field.  Dispersion 

data should be characterized by a narrow, well-defined peak.  In this case, the interpreter 

merely selects phase velocities that fall along the well defined peak [Anderson, 2010].  

Figure 2.10 shows three phase velocity placements on a quality dispersion curve.  Figure 

2.10.B shows phase velocities that were properly chosen along the smooth defined peak 

while 2.10.A and 2.10.C show points that have been misplaced. 

It is imperative for the interpreter to correctly place the chosen points so phase 

velocities correspond to the correct frequencies and in turn display an accurate velocity 

profile.  Different frequencies travel through the depths of the subsurface at different 

speeds.  When points are chosen on the dispersion curve, the software associates a phase 

velocity with a specific depth.  Each depth interval is then assigned an average velocity as 

it is plotted on the profile [Anderson, 2010]. 



www.manaraa.com

26 
 

 
 

 

Figure 2.10:  Chosen phase velocity placements along the dispersion curve:  A) 
Misplaced points; B) correctly placed points; C) misplaced points [Anderson, 2010]. 
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Shear wave velocity is the dominant parameter influencing changes in Rayleigh 

wave phase velocity.  For the purposes of inversion, Poisson’s ratio and therefore the 

constant C in Equation 2.2 can be assumed.  Surf-Seis (Version 2.05) is the software 

package that the Missouri University of Science and Technology utilizes with their 

MASW equipment to generate velocity profiles of the subsurface.  Surf-Seis presets the 

value of C to be 0.88.  Based on multiple modeling studies using realistic Compression 

and Shear wave velocities, the Kansas Geological Survey confirmed that this assumption 

introduces minimal error (generally <3%) into the output Shear wave velocity data 

[Anderson, 2010].   

2.6.5.  MASW Limitations.  Soft, flat ground is best to set the MASW 

instrumentation up on because it allows the geophones to have a strong coupling to the 

soil without unnecessary anomalies present in the topography of the region (Figure 2.11).  

Uneven surfaces act as potential planes for the Rayleigh waves to reflect off of and cause 

errors in the data readouts that is referred to as “noise.”  Any surface relief whose 

dimension is greater than 10% of the receiver-spread length will cause a significant 

hindrance to surface wave generation [Surf-Seis, 2006].  

 

Figure 2.11:  Flat or gentle slopes are preferable for active MASW.  Topography can 
interfere with surface wave propagation: A) flat; B) uneven ground [Surf-Seis, 2006].  
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Surface waves generated by natural or cultural sources outside the intended 

impact can skew the shot gathers acquired in the field (Figure 2.12).  If performing the 

test in a quarry, it is best to do so in areas where there is no operating machinery that will 

add “noise” to the acquired data.  If possible, one must make the proper accommodations 

to eliminate all outside sources of “noise” at the test site before acquiring data.   

Some of the waves generated by intended or outside sources are reflected and 

scattered as they encounter shallow and surface objects (e.g., building foundations, 

culverts, ditches, boulders, and so forth) and become “noise.”  In the mining industry one 

must pay close attention to the natural geology in the region where the instrumentation is 

being set up.  Clay seams, voids, or large joint sets and fractures in the subsurface will act 

as a plane for wave reflection and scattering [Anderson, 2010]. 

In addition to surface waves, P-waves are generated from impact sources as well.  

These waves travel faster than surface waves and will be seen at the top of the shot gather 

above the surface waves.  The P-waves are also sources of “noise” when interpreting 

MASW data and must be removed from the shot gather to generate a velocity profile that 

will be easy to interpret [Anderson, 2010]. 
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3. PROBLEM STATEMENT  

Mining Engineers have applied tomographic imaging to identify stress 

distribution, consolidation, rock integrity and strength, and to monitor damage or 

disturbance that has resulted from different rock excavation techniques.  Blast Induced 

Rock Damage (BID) contributes to a redistribution of stresses within stone such that the 

rock mass weakens from resultant blasting fractures.  Advances in geophysical sciences 

provide an opportunity for NDT methods to be researched in an attempt to attain the BID 

data more efficiently.  The MASW geophysical method has many NDT applications in 

the construction, transportation, and mining exploration industries.  It is a simple process 

that generates tomographic images of the subsurface that are easily interpreted by the 

engineer.  However, MASW has not been applied to monitor and quantify BID produced 

from pre-split shots that are commonly used to create safe high-wall working conditions 

in surface mines or to produce saleable loaves at dimension stone quarries. 

The goal of pre-splitting at a dimension stone quarry is to split stone and separate 

it from the rest of the deposit while preserving the structural integrity of the loaf extracted 

as well as the rock mass left behind.  Pre-split design requires explosives that fire nearly 

simultaneously.  Simultaneous initiation requires explosives that possess a high velocity 

of detonation and create high pressures within the borehole during shot-firing.  BID is 

caused by the impulsive release of energy and pressure that explosives produce.  

Advances in explosive manufacturing provide the ability to reduce the detonation 

velocity of the primary explosive (detonating cord) that is commonly used in pre-

splitting, so the pressure within the borehole will be reduced as well.   

This experiment was divided into two phases.  The author performed 19 pre-split 

shots in an isolated portion of a sandstone dimension stone quarry in phase 1 of the 

experiment using a detonating cord with a low velocity of detonation fired in sand-filled 

boreholes.  Phase 2 included 20 pre-split shots which gathered information on blasts that 

used a cord with a high velocity of detonation also fired in sand-filled boreholes.  

Previous research discussed in the Review of the Literature (see Sections 2.2 and 2.3) 

indicated that using cord with a lower velocity of detonation in pre-splitting will yield 

less BID than a cord with a high velocity of detonation.  The author used the MASW 
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method to gather Shear wave velocity data on a sandstone deposit before and after a pre-

split shot.  The decrease in the Shear wave velocity provided information on the BID 

caused by the two strengths of 8 grams/meter (40 grains/foot) detonating cord used in this 

experiment.   

The main objective of this research experiment was to determine whether or not 

the MASW geophysical method could be applied to monitor the damage that explosives 

used in pre-splitting induce on the remaining stone.  The tomographic data generated 

from the MASW software would also quantify the damage at specific depth intervals into 

the rock mass from the borehole locations where the explosives were placed.  Secondly, 

the author wanted to confirm the previous research to determine that less BID is produced 

from low velocity detonating cord as compared to high velocity detonating cord. 

 

3.1. HYPOTHESIS 

Cold Springs Granite Dimension Stone Quarry determined an optimal blast design 

by comparing the blast pressures induced from HV and LV detonating cord through 

different coupling medias (see Sections 2.2 and 2.3).  The studies conducted by Cold 

Springs indicate that a low velocity of detonation fired in sand-filled boreholes produce 

the best results with very little BID.  The author believed that a similar outcome would 

result when performing both HV and LV pre-split shots in a sandstone dimension stone 

quarry. 

The MASW method measures the seismic wave velocities that travel through rock 

to determine consolidation as a function of depth.  Likewise, this measurement shows the 

structural integrity of the stone before any one event compromises its strength.  These 

waves recorded before a blast, compared to waves recorded after a blast, would 

determine the extent of the BID.  The author believed that the MASW geophysical 

method would show slight decreases in the Shear wave velocity at shallow depths within 

the sandstone deposit, indicative of BID. 
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3.2. APPLICATION/IMPORTANCE OF INVESTIGATION  

Dimension stone quarrying requires its blast design to have a limited amount of 

perpendicular damage to the finished cut line.  This is critical to the economic recovery of 

saleable stone.  Smooth-wall blasting is performed in surface and underground quarries 

as well as in construction to create safe high walls, portal entries, tunnels, and pillar 

supports.  Large rock sculptures such as Crazy Horse and Mount Rushmore, require the 

remaining rock to be unharmed as well.  The Explosive Engineers at these mountains are 

most concerned with preserving the structural integrity of the stone that is left behind 

after each blast.  In order for the sculpture to be successful, preserved, and able to 

effectively support itself, careful drilling must take place prior to every engineered blast.  

All of these applications demand that the rock being blasted as well as the rock mass left 

behind remain competent and that it keeps its structural integrity.  Careful control of the 

blast is vital.  Overshooting, bad designs, excessive borehole pressures, and delay scatter 

could potentially ruin several thousand tons of saleable product and/or create unsafe 

working conditions.   

If the research performed proves that the MASW method may be applied to 

monitor and quantify BID at pre-splitting operations, the Explosive Engineers will then 

be able to take this information to correctly design their blasts.  The MASW method 

should not be used on every blast.  Rather the engineers may gather BID data in different 

geological conditions and from different blast designs to then apply the correct blast 

parameters in similar geologic conditions once the engineers have determined which 

designs produce a minimum amount of BID.  Through this research, the author intended 

to determine whether the MASW geophysical method can be applied on a large scale in 

surface mining by quantifying the amount of BID that is produced from typical pre-split 

applications and comparing this BID to mine requirements for saleable product, loaf 

production, rock mass competency, and high-wall stability. 
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4. GEOLOGY OF THE EXPERIMENTAL LOCATION  

The experimental location for this project was the DiPardo Sandstone Quarry.  It 

is approximately 227 meters north of the Maramec Spring Geological Quadrant in Rosati, 

Missouri (Figure 4.1).  Approximately 290 meters (950’) above sea level, the operating 

quarry consists primarily of the Roubidoux Formation.  This quarry is located South of 

interstate Highway 44, on County Road 3630.  This is a unique dimension stone quarry.  

It is owned and operated primarily by one man, Jim DiPardo.  Though the quarry 

originally started producing dimension stone in the 1960s it had ceased to be in operation 

until when DiPardo purchased the land and reopened it for production in 1983.  For the 

most part, he is the sole employee, although when big jobs come along he may have as 

many as six people working part time.   

Once common in the building trades, sandstone fell out of favor over the years.  

This may reflect a common trait in sandstone; it can be very friable, making it 

considerably less resistant to weathering and unable to support substantial loads.  

However, the opposite can also be true.  In the right conditions, well-cemented sandstone 

can be very strong and is ideal material for buildings and paving roads.   

The sandstone at the DiPardo quarry varies in strength and nature within very 

short distances.  The overburden stone tends to be very weathered and friable.  However, 

the deeper deposits show an increase in strength, and therefore DiPardo must separate 

each piece of stone according to his customers’ demands.  He has tests performed on the 

stone to make sure it will hold up under a variety of uses.  He mainly interacts with 

architects, builders, and homeowners (Figure 4.2).   

 

4.1. LOCAL GEOLOGY  

The author researched three of Missouri’s Geological Quadrangles to understand 

the depositional origin, stratigraphy, lithology, structure, and mineralization of the 

regional geology and its specifics are discussed in Appendix H.  In the 1980s, when 

DiPardo restarted production at Rosati Sandstone Quarry, he had the Missouri Division 
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of Geology and Land Survey make a geological assessment of his land.  Several 

formations of the Paleozoic era are deposited in the surrounding areas (including the 

Ordovician age Gasconade, Roubidoux, and Jefferson City Formations, as well as the 

Pennsylvanian age Formation), but the assessment’s results show that the dimension 

stone quarry consists completely of Roubidoux sandstone.  In light of this information, 

the author researched the Roubidoux Formation more extensively and its characteristics 

have been solely considered throughout the project.   

 

 

Figure 4.1:  Aerial map of the DiPardo Sandstone Quarry location [Proctor, 1993]. 
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The Roubidoux sandstone at the quarry is ideal for producing competent 

architectural dimension stone.  The stone extends approximately 30 meters (100’) below 

the bottom of the quarry pit with almost no evidence of interlaying beds of chert, shale, 

clay, or dolomite.  The mining progress shows this very well.  Approximately 10 meters 

(30’) has been excavated to date.  The high-walls that resulted from DiPardo’s mining 

sequence show a cross section of the upper geology in the quarry (Figure 4.3).  

Sandstones of the Roubidoux Formation are prevalent throughout as one massive deposit 

with many horizontal bedding planes and evidence of weathering.   

 

 

Figure 4.3:  The high-wall produced by DiPardo’s excavation methods shows a cross 
section of the sandstone being mined at the quarry.     

 

4.1.1.  Natural Seams, Bedding Planes, and Fractures.  Sandstone deposits 

characteristically possess definite horizontal bedding planes and vertical seams.  Unlike 

massive deposits such as granite, marble or limestone, the extent to which the sand grains 

in sandstone deposits are cemented together is much less, and this allows sandstone’s 
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bedding planes to cleanly break free from the rest of the rock mass when the stone is 

being mined.  It is because of this that DiPardo has been able to produce stone effectively 

for more than 20 years without the use of explosives.   

Very little blasting has been performed at the Rosati quarry.  DiPardo hired 

contract blasters in the past, but he has harvested most of the stone himself using 

“feathers and wedges” and a “darter-splitter.”  DiPardo carefully examines each rock and 

then drills holes on natural seams, bedding planes or fractures with an air drill.  The 

“darter-splitter” is a hydraulic splitter that is inserted in the hole and used to "bump" the 

rock into 3-to-4-ton blocks.  Though this method is reliable, the split created with this 

method can be very unpredictable.  The cracks that propagate from the wedging method 

follow the natural split by going to areas that are least resistant to stress.  This commonly 

creates dimension stone that is awkward in size and shape, unlike the blocks of stone that 

can be produced from drilling and blasting.  

The dimension stone that DiPardo typically markets ranges from 1-3 cubic meters 

(2-6 tons).  Any stone produced larger than this is not manageable for the excavation 

equipment that he owns and has to be broken into smaller pieces before moving it.  

Anything smaller has limited use and often it is considered waste.  

Because of the desired size of blocks, the natural seams and bedding planes were 

incorporated into the blast design for this research project, in order to achieve the product 

and to mine safely.  The seams and bedding planes acted as natural pre-splits, and during 

the shot, the stone would mostly break perfectly along these lines in addition to splitting 

along the designed row of drill holes (Figure 4.4).  The proper application of blasting 

design greatly increased the efficiency and productivity of this quarry by allowing the 

area to be safely mined in a series of benches with reduced waste, by harvesting stone of 

appropriate shape and size for DiPardo to market as product. 

Natural seams and fractures could also cause the pre-split to propagate away from 

its intended path.  The gas pressure escaped to the natural joints and fractures during the 

blast, and as a result, the rock split in the direction of jointed and fractured areas in 
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addition to the line of drilled holes.  This caused some of the stone produced from some 

shots to be small and in most cases had to be disregarded (Figure 4.5).  

 

 

Figure 4.4:  Seams and bedding planes acted as natural pre-splits.  During the shots, the 
stone broke along these lines in addition to splitting along the row of drill holes. 

 

 

 

Figure 4.5:  Fractures present in the shot area caused some of the stone to break into 
small rocks during the blast and had to be regarded as waste. 
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In twenty years of operation, DiPardo has never applied blasting applications at 

his quarry by himself, but on several occasions he had a crew of blasters extract small 

portions of the pit.  The experimental location was directly adjacent to a portion of the pit 

that DiPardo contracted out to a local drill and blasting company.  The blast designs that 

were used by the contract company are unknown, but evidence remains on the high-walls 

from drill marks and radial fracturing that was produced from the shots (Figure 4.6).  It 

appears that the boreholes were overloaded due to the excessive amount of radial 

fracturing surrounding the drill holes.  In addition, one drill hole was practically in 

contact with the experimental section in the north end of the pit.  The north end of the 

experimental location was very fractured at every level during the project’s mining 

sequence (Figure 4.7).   

 

 

Figure 4.6:  The drill hole markings are evidence of former blasting operations.  Radial 
fracturing and excessive cracking surround the drill holes where the charge was placed. 
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4.1.2.  Virgin Deposit.  To best control the data being gathered, the tests needed 

to be completed in a virgin deposit – an area of the pit that had not been used as a 

production zone before.  Had explosives been used directly on the site location in the 

past, there would have been a chance that radial fracturing damaged the deposit (as the 

example in Figure 4.6 shows) to an unknown depth.  In addition, because any previous 

implemented design and techniques that were used are not exactly the same as those that 

were being tested, an extra variable would be introduced to the experiment and the 

produced data would not be as accurate or meaningful.  This type of variation could not 

be controlled, and an attempt to make sense of the data would potentially be difficult.   

Fortunately the experimental location was a virgin deposit.  The location had 

never before been directly exposed to blasting or the other extraction methods that 

DiPardo used on a regular basis.  However, severe fracturing was prevalent in the north 

section of the pit from an adjacent blast as was previously discussed.  Nonetheless, the 

virgin deposit enabled the author to interpret and compare the data confidently because 

he was aware of the strength of the explosives and the blast design parameters that were 

implemented while blasting each shot area.   

4.1.3.  Weathered and Unweathered Sandstone.  Because the experimental 

location was a virgin deposit, the top of the stone was exposed to constant weathering 

(Figure 4.8).  Trees, shrubbery, grass and moss grew on top of the grayish surface of the 

sandstone mass.  This is evidence that the seams and fractures are conduits for fluid flow 

and the weathered stone was prevalent within the first 2.13 meters (7’) of the surface.  

Several series of blasts had to be completed before truly competent unweathered 

sandstone was completely uncovered.  The unweathered stone is typically white with 

bands of orange and brown that comes from minerals in the soil such as iron and 

manganese.  Sandstone is not homogeneous, but from samples one can determine how 

the region has changed slightly through short distances.  To determine the elastic 

properties of the stone, the density was found by performing a submersion test of rock 

samples from each shot area.  Two rock samples were taken from each shot location, and 

the average density was calculated from the results of submersion tests.  The results of 

the submersion tests may be found in Appendix H.  The density of the stone changed 
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slightly throughout the experimental test location, ranging from 2.05-2.58 grams per 

cubic centimeter. 

 

 

Figure 4.8:  A view of the experimental blast location prior to any shots or data gathering.  
The area was a virgin deposit and was exposed to constant weathering. 
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5. EXPERIMENTAL APPROACHES AND PROCEDURES 

The main objective of this experiment was to determine whether or not the 

MASW geophysical method could be used to monitor and quantify the BID that is 

produced from pre-splitting applications by measuring the Shear wave velocity at specific 

shallow depth intervals into the stone from the split line.  Secondly, the author wanted to 

confirm that an explosive with a lower velocity of detonation would yield less BID than 

an explosive with a higher velocity of detonation.  To accomplish both of these goals, it 

was necessary for the author to follow a scientific method to obtain an adequate statistical 

sample on shots that were performed when using a low detonation velocity as well as on 

shots that were performed when using a high detonation velocity. 

Due to the unique nature of the test site and the methods that were used in this 

project, the experimental approach and procedure had to be carefully prepared.  Quality 

planning and maintained equipment ensured that proper blasting techniques were applied 

to create the desired product while generating a smooth wall that would give meaningful 

MASW data for all of the shots performed in the experiment.  Also, to minimize variation 

in the process, the same procedure was followed for every blast and MASW set-up. 

 

5.1. PRE-SPLIT APPROACH, BLAST CONSTANTS AND VARIAB LES 

Though the strength of the stone changed within short distances at the quarry, the 

rock being blasted was consistent in geologic deposition, lithology, and stratigraphy and 

this was originally considered to be a constant.  The stemming used to confine the 

explosives within the borehole was also constant for every shot; sand was the chosen 

stemming material.  The blast hole design parameters remained constant for all of the 

shots.  The pre-split “rules of thumb” that were discussed in the Review of the Literature 

(see Table 2.1) were applied to the procedures.   

Detonating cord is a common explosive used in pre-splitting due to its small 

charge weight and high velocity of detonation.  However, a high velocity of detonation 

will yield high pressures in the borehole during the blast.  This condition is the cause of 
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BID.  Decreasing the pressure within in the hole during detonation will in turn decrease 

the BID.  The variable in this project was the explosive used to create the split.  Both 

detonating cords used in this project had nominal charge weights of 8 grams/meter (40 

grains/foot) and they were made specifically for pre-splitting.  However, Fire-line 8/40 

HMX LS Ribbon is a cord that has a high velocity of detonation as it is manufactured to 

detonate at 7,500 m/s (24,600 fps) [Product Manual, 2005].  Prima-Shear 8 g/m was the 

second type of detonating cord used in this project.  When this cord is manufactured, the 

normal explosive composition of detonating cord is mixed with other low strength and 

inert materials.  This still allows for a high velocity of detonation when initiated but 

Prima-Shear detonates at 5,000 m/s (16,400 fps) [Product Manual, 2005].  

This project included two phases of pre-split shots performed at DiPardo’s 

sandstone dimension stone quarry.  As such, 19 separate shots were conducted in Phase 1 

of the experiment using Prima-Shear (LV cord) while 20 shots were conducted in Phase 2 

of the experiment when using Fire-line (HV cord) as the explosive. 

5.1.1.  High Speed Photography of Detonation Velocity.  The given velocities 

of the cords (HV cord – 7,500 m/s, LV cord – 5,000 m/s) were obtained from technical 

consultants that work for the manufacturer, Dyno Nobel.  However, a number of potential 

variations present during the manufacturing process could have changed the velocity of 

detonation, none of which the author had control over.  To ensure that the detonating cord 

selected met its specifications, the author checked these given velocities by performing 

high speed photography tests of each lot of detonating cord that was used in the project.   

  The Phantom V5.1 high speed video camera was used to determine the actual 

detonation velocity of both cords used in this project and it has capability of filming at 

90,000 frames per second.  Each explosive’s velocity of detonation was tested separately.  

To best capture the image and calculate the detonation velocity of each cord, the tested 

cord was tied horizontally between two points.  The Phantom software requires that the 

image displayed on the lap top screen to include a scaled distance to calculate the speed 

at which events were occurring.  A sheet of ply-wood that was painted with alternating 

red and white 10.16 cm (4”) stripes was placed behind the cord to provide the scale.  The 

tests were conducted on a clear, sunny day when there was enough light to enable camera 
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operation.  Figure 5.1 shows eight frames that were taken by the Phantom system while 

testing the HV Fire-line. 

When observing the LV Prima-Shear the sample rate at which the Phantom was 

adjusted to was 10,000 frames per second.  There was a 256x256 resolution, a 30 µs 

exposure, and a post trigger of 29,188.  To account for human error when picking points 

on the Phantom software, the author recorded three different velocity readings of each 

tested cord.  The LV Prima-Shear performed within its specifications as the average 

velocity calculated was 4,911 m/s (16,112 fps).   

When observing the HV Fire-line, the sample rate was increased to 13,029 frames 

per second.  The resolution and post trigger were kept constant, but the exposure was 

increased to 35 µs.  The HV Fire-line also proved to be within specifications as the 

average velocity of detonation was determined to be 7,472 m/s (24,514 fps).   

5.1.2.  Blast Procedure.  As is consistent in the industry, safety was the primary 

concern before carrying out any scheduled work or blast.  To ensure safety, good 

communication techniques and resources were shared at the experimental test site.  

Standard operating procedures were followed by properly trained personnel to comply 

with the Code of Federal Regulations that is governed by the Mine Safety and Health 

Administration (MSHA) and the Office of Surface Mining (OSM).  The author often 

required assistance when carrying out the experiment at the quarry.  Missouri S&T 

provides undergraduate research assistants for projects such as the one discussed in this 

report.  When working within 1.83 meters (6’) to the edge of the bench, the workers were 

properly harnessed and securely tied off to a large oak tree.  The equipment was also tied 

off to the same tree in these circumstances.  All regular personal protective equipment 

was used when conditions required them at the quarry. 

To avoid any tripping hazards, and to prevent the equipments’ hoses, ropes, and 

cables from getting snagged, the benches were kept clean of debris that developed 

naturally from every blast.  This also made it easier to visually inspect the post blast site 

for natural joints and seams as well as BID.    
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As mentioned, the spacing relationship and hole diameter was constant for every 

blast.  The holes’ diameters were 3.18 cm (1 ¼”) and they were drilled 30.48 cm (12”) 

apart.  However, before drilling began, measurements were marked to ensure the holes 

were spaced correctly and that at least a burden 30 times the hole diameter was achieved 

for the blast.  The burden for each hole was then documented after drilling.  The blast 

area was also inspected very closely to search for indications of prevalent seams or joints.  

When the blast was performed in a heavily fractured or jointed zone, the rock would not 

only split along the designed row of holes, but also the fractured zones would create a lot 

of waste rock.  Fracture zones were indicated with green marker paint (Figure 5.2).  This 

was documented in the field notes and in digital pictures that were taken.   

Most shots contained five blast holes.  However, the natural seams and joint sets 

could be used to the driller’s advantage as was discussed in the Geology portion of this 

report (Section 4.1.1).  Likewise, some shots had as little as three holes, while others had 

as many as six (Figure 5.2). 

 

 

Figure 5.2:  After drilling, the final burden for each hole was documented, and the natural 
seams and joint sets were marked with green paint. 
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The geology of this region is very horizontally layered.  The author used this 

feature to his advantage when determining the depth of each shot.  The extent to which 

the sand grains in the quarry are cemented together allowed the bedding planes to cleanly 

break free from the rest of the rock mass when the stone was being blasted (Figure 5.3).  

This phenomenon helped easily create safe workable benches (Figure 5.4) without 

requiring “lift” shots.  Likewise, the depths of the holes were determined by the distance 

from the surface to the next horizontal shelf.  This depth also had to be measured before 

every shot to properly lift the stone away from the shelf.  Typical depths drilled ranged 

between 0.91 and 1.22 meters (3’ and 4’), but sometimes as deep as 1.83 meters (6’).  

The blast parameters for each shot may be found in Appendices E and F.   

 

 

Figure 5.3:  The holes were drilled to a depth that would cause the stone to split 
horizontally along the bedding plane.  The bedding plane was marked with green paint. 
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Figure 5.4:  Safe workable benches were easily created without performing “lift” shots. 

 

When drilling the holes in their respective locations, the author was very careful 

to ensure each hole was drilled vertically and did not drift at an angle.  The holes were 

drilled using a Midwest S-84-F Sinker Drill.  The author was mindful to blow out the 

hole several times while drilling to avoid the drill cuttings clogging up the hole and 

causing the drill steel to become lodged down in the hole.  After the drilling was finished, 

the holes were cleaned out with an air hose to ensure the holes were free from any drill 

cuttings and to check for any accumulation of water. 

Sandstone is a very absorbent rock, and though it is friable, the pre-split “rules of 

thumb” regarding minimum charge diameter must be applied.  Likewise 3.18 cm (1 ¼”) 

holes require a charge diameter of at least 0.80 cm (5/16”).  To achieve this charge 

diameter, six lengths of the 8 grams/meter (40 grains/foot) detonating cord were used in 
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every hole.  Electrical tape was used every few centimeters to keep the six lengths bound 

together (Figure 5.5).   

 

 

Figure 5.5:  Electrical tape kept the six lengths of detonating cord bound together. 

 

When loading the explosive in the boreholes, the detonating cord went from the 

bottom of the hole to approximately 5 cm from the top of the hole.  Each hole was then 

loaded with the sand stemming medium.  To reduce variation in the blasting procedure, 

the stemming material was kept constant in every test.  Often, the drill cuttings and fines 

produced from the mining process would be wet and poorly sorted material.  Had this 

been used as stemming, air gaps would most likely form in the borehole, and the 
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explosive would not be properly confined.  “All Purpose” bagged sand was brought onto 

the sight and used to stem the holes (Figure 5.6).  This ensured that the sand was 

completely dry, well sorted, and had uniform granular size.   

 

 

Figure 5.6:  Sand was used as stemming media to confine the explosives in the boreholes. 

 

The blast cable extended out to a distance approximately 4.5 meters (15’) away 

from the shot location.  The author then carried out the “1 cap-18 grain donor method” 

(see Section 5.1.3).  At request of the property owner, the detonating cord and blasting 

detonator on the surface was then covered with a blast mat to reduce the noise and 

vibration that would come from the shot.  A recording seismograph with an air blast 

monitor was also placed at the closest inhabitable structure which was approximately 100 



www.manaraa.com

52 
 

 
 

meters away.  All of the shots were well below noise limits, recording less than 100 dB at 

the structure. 

At this point, the shot was ready to be initiated.  The property owner was 

informed that the shot was ready as the blasters went to a safe shooting location after they 

ensured that there were no personnel or equipment by the blast site that could be injured 

or damaged from the shot.  Before each initiation, the blast team used routine audible and 

visual warnings. 

After each detonation, the blasters waited momentarily before returning to the 

blast area for inspection.  The split was then examined and field notes were taken.  The 

blast cable was reeled up, and the remains of the blasting detonator were discarded.  The 

procedure at this point was either to continue with the next shot by restarting the entire 

process, or to instruct the excavation equipment operator to enter the site and to remove 

the stone from the blast area. 

A ramp was strategically created along with the production shots in order for 

excavation equipment to easily tram onto the working benches to remove the blasted 

stone.  A safety berm was constructed on the edge of the cliff to protect the machinery 

that drove onto the site during each excavation phase.  In most circumstances, this 

equipment included a Bobcat 865 skid steer, a Bobcat 331 mini excavator, and a 

Caterpillar 920 fork lift (Figure 5.7).   

During task planning, the author ensured that the materials listed in Table 5.1 

would be on site, maintained and available when performing pre-split shots. 
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Figure 5.7:  Machinery aided in excavating the blasted stone.  Some of the equipment 
used included: A)  Caterpillar 920 fork lift; B)  Bobcat 331 mini excavator. 
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Table 5.1:  Materials necessary during scheduled blast days. 

Shovels, pry bar, tool box Tape Measure 

 

Marking paint 

 

45 meters (150’) of Air Hose with Chicago 

End fittings  

Air Compressor 

 

Air Sinker Drill 

 

7 meters (20’) of Air Hose with Chicago End 

fittings  

Rock Drill Oil 

 

Drill Oiler “PIG” 

 

Drill Steel 0.91 meters (3’) in length with a 

3.18 cm (1 ¼”) bit 

Field Notebook 

 

Digital Camera 

 

Drill Steel 1.83 meters (6’) in length with a 

3.18 cm (1 ¼”) bit  

4 x Whip Checks 

 

Electrical Tape 

 

Air Powered Hole Cleaner with shut-off 

valve 

Knife 

 

Electric 

Detonators 

 

Fire-line or Prima-Shear detonating cord Blast Mat 

 

Blast Cable 

 

3.6 grams/meter (18 grains/foot) detonating 

cord 

Seismograph Blast Box 

 

 

 

5.1.3.  Initiation Method.  As discussed in the Review of the Literature (Section 

2.1.1), pre-splitting works best when the shots initiate almost simultaneously.  

Simultaneous initiation allows the stress fields from adjacent holes to interact and makes 

the rock split preferentially along the cracks propagating between the holes.  Moreover, 

crack propagation in the unwanted directions are reduced, and the structural integrity of 

the blasted material is preserved [Lownds, 2000].  Similarly, when an explosive 

detonates, the shock waves travel at speeds specific to the media through which they 

travel.  The velocity of crack propagation is dependent on the speed at which the shock 

waves are traveling through the stone.  Each type of rock has unique physical 
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characteristics, but pre-splitting is most effective when the velocity of crack propagation 

is determined and incorporated into the timing of the design.   

Electronic initiation would be preferable in pre-split designs where the “down-

the-hole” initiation should fire in millisecond intervals to incorporate the velocity of 

crack propagation into the design.  However, currently electronic initiation is not accurate 

enough to program the detonators to fire at microsecond intervals.  To incorporate the 

velocity of crack propagation into the timing of this experiment’s pre-split design, the 

detonators would have to fire in microsecond intervals.   

Nonetheless, an advantage of using electronic detonators is that they fire very 

precisely and have eliminated the variation of delay scatter.  Delay scatter is typical in 

detonators that utilize pyrotechnic energy as a means of delay and initiation and this 

scatter prevents exact initiation timing.  As this occurs, the explosive damages the stone’s 

integrity rather than performing the desired task [Cunningham, 2000].   

Unfortunately, this experiment was not supplied with electronic detonators.  

Therefore, pyrotechnic blasting detonators had to be used as the means of initiation.  In 

light of this, the author aimed to eliminate delay scatter and ensure all holes fired 

simultaneously.  Had individual pyrotechnic detonators been used “down-the-hole,” 

logically one would assume that delay scatter would occur, and no procedure could 

combat this.  Delay scatter would introduce significant variation into the project, and 

likely cause BID.  However, if only one electric detonator was used to initiate individual 

lengths of detonating cord, each of which then initiated an explosive column, no chance 

of scatter would be present. 

The “1 cap-18 grain donor” method securely ties a low strength detonating cord, 

1.22 meters (4’) in length onto the top of each “down-the-hole” column of explosives 

(Figure 5.8).  This length of low strength cord sits on the surface and acts as a fuse or a 

donor cord to top initiate the explosives in the holes.  Only one electric detonator was 

used in the initiation process and delay scatter variation was eliminated.  Each surface 

donor cord was connected to the electric detonator (Figure 5.9).  All of the donor cords 

were taken from the same spool and shared an equal velocity of detonation.  After 
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connecting the donor cords individually to each “down-the-hole” cord, the lengths of the 

low strength cords were measured to ensure that the distance between the detonator to the 

start of the top of the explosive column was exactly the same for each hole in the shot 

thus ensuring simultaneous detonation of the holes in each pre-split (Figure 5.10).   

 

 

Figure 5.8:  “1 cap-18 grain donor” initiation method. 

 

 

Figure 5.9:  Five equal lengths of donor cord connected to one electric detonator. 
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Figure 5.10:  The length of each donor cord was measured to ensure that the distance 
between the detonator connection to the “down-the-hole” cord connection was exactly 
the same for each hole in the shot.  Tips were cut off of the donor cords to make them 
uniform in length. 

 

To prevent misfires or cut-offs when tying detonating cords together, they must 

intersect at right angles or be parallel to each other.  Knot connections in detonating cord 

should be pulled tight to create positive contact between the two lines [Product Manual, 

2005].  The author was very conscientious when tying the donor cord to the “down-the-

hole” cord in order to create a positive contact.  This initiation method required the author 

to create a connection which wraps the donor cord around the “down-the-hole” cord 

several times and keeps the two cords parallel to each other.  The connection was also 

wrapped in tape to keep the two cords from losing contact (Figure 5.11).  
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Figure 5.11:  The low strength donor cord acted as a fuse for the “down-the hole” cord:  
A) Positive connection between the donor cord and the “down-the-hole” cord; B) the 
connection was wrapped in tape to prevent losing a secure contact between the two cords. 
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The “1 cap-18 grain donor” method is plausible to use in pre-splitting when the 

number of holes in the design are few and closely spaced.  However, this method could 

be very difficult to accomplish safely on larger shots.  Larger shots would require more 

low strength donor cord to be present on the surface.  In turn, this would create more of 

an air blast during initiation.  Also, the longer lengths of low strength donor cord could 

easily become a tripping hazard or become entangled together and “cut-offs” and/or 

misfires would result. 

5.1.4.  18 Grain Reliability Tests.  When detonating cord is designated as a 

donor, as the detonator detonates, the purpose of the donor is to initiate all detonating 

cord “down-lines.”  Sometimes the industry refers to donors as “trunk lines.”  Some 

detonating cords will not reliably self-to-self initiate.  When selecting a detonating cord 

trunk line, one must consider what the trunk line must initiate and what must initiate the 

cord using the following guideline:  

• Detonating cords between 3.6 and 10.6 grams/meter (18 and 50 

grains/foot) initiate each other and themselves when they are securely tied 

together, unless specified otherwise.  Normally cords with a core load less 

than 3.6 grams/meter (18 grains/foot) do not initiate themselves [Product 

Manual, 2005]. 

For this reason, the author chose 3.6 gram/meter (18 grains/foot) cord to serve as 

the donor in order to prevent misfiring by reliably initiating both of the 8 grams/meter (40 

grains/foot) cords that were used in this project.  Misfires could ruin the pre-split because 

the hole-to-hole spacing would be increased, and the shot would step outside the 

boundaries of the blast design “rules of thumb.”   

To ensure the 3.6 grams/meter (18 grains/foot) donor cord would reliably initiate 

both the HV Fire-line and the LV Prima-Shear, a test was conducted prior to application 

in the field.  A length of the 3.6 grams/meter (18 grains/foot) cord was tied between two 

points at the Missouri S&T experimental quarry.  HV Fire-line was tested first by 

suspending five lengths of the HV cord to the 3.6 grams/meter (18 grains/foot) donor 

cord using the recommended clove hitch.  When the shot fired, two of the suspended 

lengths of HV Fire-line did not initiate, and upon inspection, the explosive powder was 
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still present in the cord.  The lack of initiation was because the clove hitches did not 

provide a secure contact between the donor cord and the Fire-line. 

The LV Prima-Shear cord was tested next.  The same set up procedure was 

followed, but when the clove hitches were tied to the 3.6 grams/meter (18 grains/foot) 

cord, the author wrapped the knot with electrical tape to keep the two cords from losing 

contact.  In this test, all five suspended lengths of Prima-Shear were initiated. 

The results of this test encouraged the author to be very mindful to create a 

positive and secure connection when tying the donor cord to the “down-the-hole” cord.  

The results also encouraged the author to wrap the knot with tape before using it in the 

field.  As a result, no misfires occurred during experimentation. 

 

5.2. MASW APPROACH   

The velocity of the seismic waves that travel through the shallow subsurface of 

competent stone should show relative uniformity.  However, when the seismic waves 

travel through stone that has been structurally damaged from a blast, the velocity will be 

decreased compared to a pre blast reading.  One of the applications for which the MASW 

method was developed is to image areas of the subsurface that are structurally 

incompetent by analyzing the change in velocity of the Shear waves.  The experimental 

set-up involved the active MASW method and a sequence of repetitive steps to indicate 

areas where the pre-split shot had caused BID, or to indicate that the blast was properly 

designed and little or no overbreak occurred during the blasting process.  This is shown 

by comparing Shear wave velocity profiles gathered before a blast to profiles gathered 

after a blast. 

The most noticeable difference in the set-up parameters from the instructions 

provided by the Kansas Geological Survey (discussed in Section 2.6.2) was that the 

geophone array was horizontally coupled to the face of the rock rather than vertically 

embedded on the ground surface.  The Review of the Literature indicates that vertical 

geophones must be used with the MASW method in order to attain accurate data [Surf-
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Seis, 2006].  This means that the geophones must be placed vertically relative to the 

surface on which the source is discharged.  The seismic source that was used in this 

procedure was a 4.5 kilogram (10 lb.) sledge hammer.  The seismic source was 

discharged on the deposit’s face -- the same surface where the geophones were vertically 

located (Figure 5.12).  An attempt was made to hit the surface of the rock face with the 

same force to send the same frequency through the stone each time.  The frequency 

created from the impact source determined the depth of investigation that was obtained 

from the geophones.  The author of this project was only interested in imaging the 

shallow subsurface (to a depth of 3.50 meters (10’)).  The author assumed that BID 

caused from pre-splitting should not affect the stone more than approximately 1 meter 

(3’) into the rock mass from the row of blast holes.  Therefore, 100 Hz geophones were 

chosen to effectively acquire information of the shallow subsurface. 

 

  

Figure 5.12:  A 4.5 kilogram (10 lb.) sledge hammer was used as the impact source on the 
rock face where the geophones were embedded into the stone. 
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Figure 5.13 shows the three main steps in the experiment’s process.  Pre blast 

MASW readings were taken prior to every pre-split shot when it was safe to do so.  The 

instrumentation was removed from the site and the field data were taken back to the 

computer lab to be analyzed.  The next scheduled work day was designated for blasting.  

Once the blasted stone was excavated from this region, the MASW equipment was 

brought back to the site and set up onto the freshly blasted rock face.  Then a post blast 

reading was taken.  The field data were again taken back to the computer lab to be 

analyzed.  The two sets of data were compared to determine the extent at which the pre-

split blast damaged the stone at each 30.48 cm (1’) interval.  

5.2.1.  Applied Field Geometry.  The recommended field geometry of the 

MASW equipment was discussed in the Review of the Literature (Section 2.6.2).  The 

author closely followed these parameters while determining a source offset.  However, 

due to the parameters of the blast design, the geological condition of the area, and 

because a new unique field application was being tested, some of the geometric 

parameters had to be significantly altered as discussed below.  Nonetheless, an attempt 

was made to use a field set-up that was similar to the recommended field geometry.   

When imaging the subsurface using MASW, the equipment allows the linear 

array of geophones to be quite large (10-30 meters (30’-100’)) to acquire images of the 

subsurface to depths ranging from 10-30 meters (30’-100’) with great accuracy.  Small 

arrays are uncommon and not routinely used in heterogeneous material.  However, the 

author was interested only in imaging the depth into the face within the first 3.50 meters 

(10’).  Typically blasted sections were 1.52 meters (5’) wide.  The author was interested 

in obtaining a velocity profile specific to each section blasted.  To limit the seismic data 

to each blasted section, the geophone array and the spacing had to be significantly 

decreased from a typical field geometry.  Two different arrays were utilized during this 

experiment.  The geophones were spaced 7.62 cm (3”) apart with an array of 1.83 meters 

(6’) (Figure 5.14) as well as spaced 15.24 cm (6”) apart with an array of 3.68 meters (12’) 

(Figure 5.15). 
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The data processed using the array of 1.83 meters (6’) (Figure 5.14) generated 

velocity profiles that were very unpredictable and inconsistent.  Some of the profiles 

produced logical data.  Conversely, other profiles produced data that were obviously 

incorrect and/or difficult for the MASW software to analyze.  This was most likely a 

result of the small geophone spacing, the location of the source impact relative to the 

geophone array, as well as unavoidable reflective surfaces being present within the 

heterogeneous material at the array location.  To combat this issue, many repetitive shot 

gathers were taken from each array location.  Typically, eight shot gathers were acquired 

per array.  This procedure consisted of gathering two sets of data at each impact location.  

The impact locations were on both the left and the right of the array at source offsets of 

both 0.76 and 1.52 meters (2.5’ and 5.0’).   

Yet, anomalous data were consistent when using the array of 1.83 meters (6’).  

The processed velocity profiles were still unpredictable and inconsistent.  Therefore, the 

author repetitively collected data with a larger geophone spacing (15.24 cm (6”)), and a 

3.66 meters (12’) array (Figure 5.15).  While the 1.83 meters (6’) array was specific to a 

1.52 meters (5’) wide blasted section, the 3.66 meters (12’) array expanded over two 

adjacent blasted sections.  Once the MASW software interpreted the data that were 

obtained from the 3.66 meters (12’) array, the velocity profiles would display Shear wave 

velocities at each depth interval of both blasted sections averaged together.  This 

undoubtedly introduced error into the gathered data but it was necessary considering that 

often the 1.83 meters (6’) array did not always produce reliable read-outs. 

The experimental location was a deposit located in an area of the sandstone 

dimension stone quarry that had never been mined before.  The experimental location had 

many cliff ledges before the blasting operations created a series of safe benches to walk 

on.  Therefore, some of the first sections blasted did not have corresponding pre blast 

data because it was unsafe to acquire.  However, adjacent areas were used to gather pre 

blast data, and the velocity profiles show that the stone was relatively similar to each 

other in these sections.  The shot areas where pre blast data could not be gathered were 

assigned pre blast readings of adjacent areas where the pre blast survey was able to be 
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safely performed.  Though this introduced error and variation into the data collection, it 

was absolutely necessary to protect the safety of the project’s personnel and equipment. 

5.2.2.  MASW Software.  The author used the RAS-24 equipment and software 

to obtain pre and post blast geophysical data in the field.  RAS-24 is a modular 24-

channel, high resolution, signal enhancement seismograph designed for shallow 

geophysical exploration.  This versatile software operates through Windows XP/Vista.  

RAS-24 is self configuring and has a familiar “point and click” interface which is easy to 

learn and operate.  This seismograph was chosen because it provides a unique flexibility 

not always found in other engineering seismographs.  The system connects to a laptop 

and the 24-channel refraction seismograph becomes ready for field operation [Seistronix, 

2010]. 

The shot gathers attained from the RAS-24 software were interpreted by the Surf-

Seis (Version 2.05) software -- developed by the Kansas Geological Survey.  Surf-Seis 

interprets shot gathers collected by the active MASW method to develop a dispersion 

curve and velocity profile related to each field log.  It is relatively simple software and 

displays results that are easily interpreted by the engineer. 

5.2.3.  MASW Procedure.  In order to minimize variation in the process and 

acquire consistent and reliable data, a major attempt was made to keep the set-up 

procedure constant every time.  The MASW equipment was borrowed from the Missouri 

University of Science and Technology – Geological Engineering Program.  To avoid 

variation in the instrumentation, the same geophones, impact source, laptop, and cables 

were used during every test.  Scheduled work days were efficiently coordinated to gather 

multiple pre and/or post blast readings.  Prior to transporting the MASW equipment to 

the quarry to gather data, the test site was cleaned of blasted stone and debris to avoid any 

tripping hazard and to keep the geophysical cables from getting snagged or damaged.  All 

of the bench surfaces were also cleaned off with the compressed air hose.  The face was 

examined and any loose stone was scaled down and discarded.  All MASW tests were 

performed when no heavy machinery was in operation that would provide outside sources 

of “noise.”  In addition, field work was not scheduled during wet weather due to the 

effects that accumulated ground water has on the equipment and data readouts. 



www.manaraa.com

67 
 

 
 

As the source impacts the stone surface, the seismic waves that travel through the 

stone reflect off of any surface present, and creates “noisy” data.    Geologic features that 

are common in Gasconade, Jefferson City, and Pennsylvanian Formations such as karsts, 

sinkholes, air voids, water accumulation, banded layers of chert, and clay create 

troublesome reflective areas that the MASW method cannot avoid.  The information 

produced in areas that contain such geological features would have made it very difficult 

to analyze and interpret the data.  Fortunately, the Roubidoux Formation that was present 

in the experimental location did not consist of the geological features that are common in 

Gasconade, Jefferson City and Pennsylvanian Formations.  These conditions allowed for 

conclusive MASW data to be gathered. 

As discussed earlier, reflective surfaces that could potentially produce “noisy” 

data were prevalent in the experimental location.  Fractures, seams, joint sets, bedding 

planes, ground water, and geological imperfections are common in sandstone.  In 

addition, the top and bottom surfaces of the face, intermediate ledges, and the edge of the 

deposit provide surfaces off of which seismic waves to bounce (Figure 5.16).  These 

reflective surfaces were very difficult to avoid considering the set-up parameters and 

geology of the region.  However, the author attempted to locate the geophones at a 

suitable distance from these surfaces so the “noisy” data would be minimized.   

Holes were drilled into the rock face in order to insert the spike-coupled 

geophones.  When collecting post blast readings, the objective was to have the geophones 

set-up at the same orientation (e.g., the same height on the face) as they were during the 

pre blast readings.  However, it was more important to couple the geophones on a smooth 

vertical surface in order to avoid reflective surfaces and to acquire meaningful data.  

Likewise, at times the holes were drilled several centimeters up or down from the pre 

blast geophone orientation.  This minor change did not make a significant difference in 

the data output, since the stone was relatively uniform in each blast region.   
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Figure 5.16:  The set-up parameters and the geologic conditions of the quarry provided 
many surfaces off which seismic waves reflected: A) edge of deposit; B) top surface of 
face; C) bottom surface of face; D) seams and fractures; E) intermediate ledges. 
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Once the author identified a smooth location on the face where the seismic wave 

could best avoid any potential reflective surfaces, he made a marking on the face at 7.62 

cm (3”) intervals.  An attempt was made to keep all of the drilled holes level and in line 

with one another.  The hammer drill was then used to drill 0.635 cm (¼”) holes 

approximately 7.62 cm (3”) deep at every mark on the tested face.  This size hole 

normally provided very good coupling for the geophones, and quality signals resulted.  

Once the geophones were coupled to the holes, and the seismograph and the computer 

were set-up, all of the instrumentation’s cable connections were made and the test 

commenced.  

During task planning, the author ensured the materials listed in Table 5.2 were on 

site, maintained and available when gathering MASW data. 

 

Table 5.2:  MASW materials necessary when performing geophysical field work. 

Marking paint and large Sharpee 

marker 

Shovels, pry bar, tool box Measuring Tools 

 

Hilti battery charger and 400 watt 

car inverter 

0.635 cm (¼”) hammer 

drill bits 

Field Notebook 

 

Hilti portable Hammer drill 

equipped with two charged batteries  

24 x 100 Hz Geophones Digital Camera 

Fully charged Laptop computer with 

RAS-24 software 

24 channel intermediate 

cable 

Mueller cable 

 

Power cable with alligator clips 12 V battery Trigger cable 

 

4.5 kilograms (10 lb.) Sledge 

hammer with trigger  

24 channel Seismograph Computer cable 
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6. DATA COLLECTION AND ANALYSIS  

The data collected from the MASW field work were very extensive and detailed.  The 

author attempted to analyze this data in a number of ways in order to gather meaningful 

information about the MASW geophysical method and its application to the mining and 

explosives industry.  In addition, the author expected the two explosives used (HV Fire-

line and LV Prima-Shear detonating cords) in this project to produce results that differed 

from one another, confirming that LV cord produces less BID than the HV cord due to 

less pressure in the boreholes during initiation.  The author approached this work with no 

preconceptions of outcomes, considering the unique nature of the experimental location’s 

geology as well as sources of variation and error that were present in the process.  From 

this study, the author developed conclusions regarding the work performed and generated 

recommendations for work that could be done to further utilize the MASW method as it 

was intended for. 

 

6.1. UNCONTROLLABLE SOURCES OF VARIATION 

Process variation must be minimized to achieve a quality product.  In this 

project’s procedure, the author made a strong attempt to eliminate sources of variation by 

using well-maintained equipment, quality explosives, dry and well sorted stemming, 

properly trained personnel, and a consistent, repetitive process.  However, events often 

occurred in the testing environment that introduced sources of variation over which the 

author had no control.  The following sections discuss the events that could have an effect 

on the amount of BID produced from each blast, as well as the quality and accuracy of 

the MASW data that were collected from the experimental location: 

6.1.1.  Variations in Blasting.  The blast design pattern did not change for any of 

the tests.  The 3.18 cm (1 ¼”) holes were spaced 30.48 cm (12”) apart, and the minimum 

changes in the burden and depth did not have an impact on the collected data.  However, 

the drill bits naturally became dull and decreased in size as a result of every hole drilled.  

Likewise, the borehole diameter decreased from one hole to the next.  It would not have 

been cost effective or time efficient to change the drill steel bit after each hole drilled.  
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The author noticed a significant change to the drill bits’ diameter after approximately 100 

holes were drilled.  To minimize variation, the bits were changed out at this time.  This 

change in hole diameter was ignored and each hole was assumed to be 3.18 cm (1 ¼”). 

 The stemming media in every shot was uniform.  “All Purpose” bagged sand was 

loaded in the entire length of the borehole to provide adequate coupling of the explosives, 

prevent surface cratering, and minimize noise and ground vibration.  However, the 

geology of the region possessed many fractures, seams and bedding planes.  Some of the 

holes that were drilled were interconnected with these geological features and the 

stemming media did not hold in the holes.  It would slowly “leak” into the natural seams 

and fractures before the shot was detonated.  The seams and fractures extended to 

unknown depths, so it would have been ineffective to continue pouring stemming into the 

hole until it was plugged.  As a result some holes resulted in having no stemming and the 

explosives therefore were not confined.  Unfortunately the project was not supplied with 

the current mining technology that has been developed specifically to combat this issue 

(e.g., hole linings).  Again this minor variation was ignored for the purpose of this study, 

and all of the holes were assumed to be loaded completely with sand. 

 The holes were drilled to a depth of a subsequent underlying horizontal bedding 

plane.  This was an advantage of blasting in sandstone because each shot could be 

designed to break the dimension stone away from the rock mass without using explosives 

in “lifter” holes.  Because of this, some sets of holes were drilled as deep as 182.88 cm 

(72”).  This produced several problems and sources of variation.  The detonating cord is 

not rigid and it was generally difficult to completely load to the bottom of holes that were 

deeper than 152.40 cm (60”).  The cord was attempted to be kept centered in the hole but 

logically this was impossible to do.  The cord would become bunched together down in 

the hole, and as a result the bottom 7.62-30.48 cm (3”-12”) of deep holes did not contain 

explosives.  Also as the explosives became bunched together in the hole, a “plug” or 

“decking” was created not allowing the stemming to pass and the entire length of the 

explosives would not be confined in sand.  The depths of these “deckings” were 

unknown, but it was evident that they existed when the holes became filled with sand 

considerably quicker as compared to an adjacent hole that was drilled to an equal depth.  
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These problems were uncommon, as a majority of shots were drilled to a depth of 

approximately 121.92 cm (48”).  Similarly, this minor variation was ignored for the 

purpose of this study, and all of the holes were assumed to be loaded from top to bottom 

with the detonating cord coupled by sand. 

 The faults and fractures present in the experimental location acted as conduits for 

fluid to flow.  When scheduled blast days occurred after periods of high precipitation, it 

was found that some of the holes contained water after being drilled.  Though the holes 

were cleaned out with compressed air, water quickly found its way back to the holes as it 

traveled through the natural seams and fractures in the area.  The holes were nonetheless 

loaded with the explosives and stemming and the shots were performed as scheduled.  

This source of variation was uncommon, and all of the holes were assumed to be loaded 

only with dry-well graded sand. 

6.1.2.  Variations in MASW.  It is optimal to perform the MASW method in dry 

conditions.  Water has very different properties than the stone.  The physical nature of 

sandstone is changed after periods of high precipitation since it is a very absorbent stone.  

In addition, water collects in natural faults and fractures.  The velocity of the seismic 

waves that propagate through the rock during the data collection would not be the same 

in wet stone as in dry stone.   

As moisture accumulates in faults and fractures, it causes these voids to enlarge.  

The voids increase exponentially especially when the accumulated moisture has a chance 

to freeze and expand.  This circumstance could potentially enlarge fractures created from 

BID, thus the data being analyzed would be skewed.   

The water from precipitation flows on the ground surface, picking up sediment 

such as dirt, clay and sand particles along the way.  As this water flows through the 

natural faults and fractures, these transferred particles accumulate in the stone and change 

the sandstone’s natural properties.   

The author attempted to not gather readings immediately after periods of heavy 

precipitation.  Unfortunately at times this was unavoidable in order to proceed with the 

project and to stay on schedule.   
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An attempt was made to gather the MASW data as soon as possible after each 

blast.  However, due to weather, availability, equipment maintenance, and the excavation 

phase, at times there were long gaps in between the shot and the post blast data 

collection.  The days in between a shot using low velocity cord and the post blast data 

collection ranged from 9-85 days while the days in between a shot using high velocity 

cord and the post blast data collection ranged from 2-8 days. 

The author consulted with a geophysicist who was well trained in the MASW 

method.  He advised that field data were better recorded on warm days rather than on 

frigid days [Anderson, 2010].  Freezing temperatures change the physical properties of 

the stone, and when the impact source strikes the surface, the frequency generated from 

the source that propagates through the rock is different from when the test is performed in 

warmer weather.  Much of the field work was performed in the winter months.  It was 

often necessary to perform field work on cold days in order to proceed with the project 

and to stay on schedule. 

The force at which the sledge hammer source impacted the stone face was not 

constant for every gathered record.  Though the field technicians attempted to strike the 

rock face with the same force every time, logically this was impossible to do.  This 

project was not supplied with a “rebound hammer” which would have ensured the source 

impact generated the same frequency through the stone for every record.  

The spike-coupled geophones that were used in this project required 0.635 cm 

(¼”) holes to be drilled horizontally into the face of the rock.  The author questioned if 

drilling these holes into the blasted face could have possibly created new fractures that 

were not a result of the blasts and/or increase the severity of BID fractures which skewed 

the post blast data.  If this were the case, these additional changes made in the rock could 

be significant enough to create inaccuracies in the post blast MASW data.   

There are geophones that are attached to flat plates rather than spikes that may be 

coupled to the surface and they are known to generate very good data [Anderson, 2010].  

Due to time constraints, spike coupled geophones were the most practical pieces of 

instrumentation to use, and the variation discussed above could not be avoided.  
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Geophones attached to flat plates are generally used when performing MASW tests on 

bridges or roads to locate deteriorated areas or corroded rebar infrastructure.  The plates 

are attached to the ground by applying an adhesive epoxy onto the bottom surfaces of the 

plates before setting them in their measurement locations.  Obviously the rock face was 

not as smooth as an asphalt road, and if this type of equipment was used, it would have 

been difficult to adequately couple the geophone plates onto the stone.  Also, it would 

have been very time consuming to allow the epoxy to dry.  More than one pre and/or post 

blast survey was done while the equipment was onsite; the geophones were relocated 

several times on scheduled MASW days.  For all of these reasons it would have been 

very impractical to use geophones coupled to the stone’s face on flat plates with epoxy.   

The linear row of 0.635 cm (¼”) holes that were drilled into the stone was sunk 

consistently to the same depth in order for the geophones to have adequate coupling.  

However, the natural joints and fractures in the rock caused air voids to be present, and 

sometimes in these regions, the geophones did not have strong coupling to the stone.  

Weak geophone coupling is very problematic for the MASW method and typically 

generates “noisy” shot gathers. 

Generally, the topography of the blasted face was flat.  However, there were times 

when large fractures, bedding planes or the end of the deposit became an issue and 

potentially interfered with the surface wave propagation.  As discussed in Section 5.2.3 of 

the Procedures, these geological features presented surfaces off of which the seismic 

waves to reflect.  Also due to the varying height of the benches, the distance from the 

geophones to the top or bottom ledges of the benches changed for every field set-up.  

These uncontrollable sources of variation within the geology typically generated 

moderate or excessive “noise” in the shot gathers.   

The rock face topography was rarely flat when pre blast surveys were conducted 

on a virgin face.  In these instances, the geophones were located on a very weathered 

surface that was sloped (Figure 6.1).  This was very problematic for the instrumentation 

and created velocity profiles that were difficult to interpret. 
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Originally the local geology was considered to be an unchanging variable in the 

experimental procedure because it was consistent in geologic deposition, lithology, and 

stratigraphy.  However, as mentioned, this deposit was virgin rock that had never been 

mined.  Though this was beneficial in some aspects, it also presented variation within the 

tests.  Of the 19 shots performed using low velocity cord, 12 of the shots were performed 

on virgin stone.  Of the 20 shots performed using high velocity cord, only 5 of the shots 

were performed on virgin stone.  Before any shot was performed on a virgin face, the 

depth to which the weathered surfaces extended to were unknown, as they ranged 

anywhere from approximately 1-2 meters (3’-7’).  The weathered rock generated MASW 

pre-blast velocity profiles that were approximately one-third of the values of those 

generated in non-virgin stone.  When compiling the statistical analysis, these variations 

needed consideration. 

Finally, as the personnel working on this project became more familiar with the 

location and more experienced with the equipment, the efficiency of the work improved 

with the quality of their work.  This was certainly the case for both blasting operations as 

well as with MASW field work.  Most noticeably, the author had no experience analyzing 

or interpreting the geophysical data on the Surf-Seis software before beginning this 

project.  Hundreds of shot gathers were processed.  As the author became more familiar 

with the software and its requirements, the data readouts became more consistent and 

more accurate.  

 

6.2. DATA PROCESSING AND ANALYSIS ON SURF-SEIS 

The shot gathers that were collected from field work were analyzed in the 

geophysics lab at the Missouri University of Science and Technology.  Surf-Seis 

(Version 2.05) is very efficient software that is effectively able to generate dispersion 

curves and velocity profiles from MASW shot gathers.  A total of 473 shot gathers were 

taken and analyzed during the experiment.  However due to “noisy” data, only 270 of the 

shot gathers were used during interpretation.  Appendix A presents all 270 sets of shot 

gathers, dispersion curves, and velocity profiles that were used to interpret the data.  The 
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uncontrollable sources of error provided the opportunity for “noise” to be present in the 

collected data.  Shot gathers that were “noisy” often produced inaccurate dispersion 

curves, and many of the lines had to be disregarded and not included in data analysis.   

It is the responsibility of the engineer to specify the field parameters in the Surf-

Seis program, which include the geophone spacing, the source offset, and the location of 

the source impact relative to the geophone array.  The engineer must also manually pick 

the phase velocity locations on the dispersion curve to be measured by the software (the 

white dots that trace the amplitude curve in Figure 6.2-B).  The potential human error that 

is present when choosing these phase velocity locations was illustrated with Figure 2.10. 

P-waves and surface waves are generated when seismic sources impact the earth-

air interface.  The P-waves act as “noise” when analyzing surface waves; the author 

muted the P-waves in each shot gather during analysis so the software would generate 

accurate dispersion curves.  The shot gathers displayed in Appendix A are print screens 

after the P-waves had been muted from the analysis. 

Typically the shot gathers should evenly slope downward when each geophone in 

the array receives the seismic energy at consistent arrival times.  Smooth shot gathers are 

preferred to obtain quality dispersion curves that will create meaningful velocity profiles.  

The author was only interested in profiling the first 3.05 meters (10’) of the subsurface, 

since he did not expect there to be any damage to the stone from the blast after 

approximately the first meter (several feet) into the stone.  Additionally, he did not expect 

there to be much variation in the stone within the first 3.05 meters (10’), so the velocity 

profiles should have generally displayed consistent linear velocities at each depth interval 

as illustrated in Figure 6.2.  The author expected noticeable changes in velocity to only 

have been found when BID was present in the post blast MASW surveys. 

This however was not the case.  It was very common in this experiment to record 

shot gathers that displayed moderate or excessive “noise.”  This could have been a result 

of bad coupling, precipitation accumulation, reflective surfaces present in the survey 

location, the altering strength of the stone, the location of the source impact relative to the 

geophone array, or human error.  The dispersion curves associated with “noisy” shot 
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gathers were often not completely smooth, and sometimes displayed inconsistent velocity 

profiles (Figure 6.3).  Extremely “noisy” shot gathers (Figure 6.4) characteristically 

would generate dispersion curves that could not be interpreted (Figure 6.5).  The 

dispersion curves similar to those shown in Figure 6.5 would not generate an accurate 

velocity profile, and this was one of the reasons why some of the lines were disregarded. 

A lot of repetitive field work was necessary in order to gather a sufficient amount 

of meaningful data for each pre and/or post blast survey.  The unique set-up parameters 

as well as the troublesome features present at the experimental location provided a 

potential for many uncontrollable sources of variation which interrupted the quality of the 

gathered data.  Of the 270 sets of MASW data that were kept, the shapes of the curves 

and the displayed graphs were constantly changing.  These are shown in Appendix A.   

 

6.3. DATA INTERPRETATION  

Once the velocity profiles were obtained from Surf-Seis, the author had to record 

and interpret the Shear wave velocity at each depth interval.  The author narrowed the 

depth of investigation within the first 3.05 meters (10’) from the impact surface.  The 

velocities were then recorded at each 30.48 cm (1’) depth interval.  The MASW software 

will provide high resolution on surfaces that are not weathered, that do not possess 

excessive reflection areas, and are of uniform thickness and strength [Anderson, 2010].  

Commonly, the MASW method is used on asphalt or concrete pavements to identify 

damaged areas within thicknesses of less than 15.24 cm (6”) at depth intervals of 7.62 cm 

(3”) [Anderson, 2010].  The troublesome geology at the experimental location made it 

difficult for the MASW software to interpret depth intervals smaller than 30.48 cm (1’) 

with as high of a resolution that is used to locate damaged zones in asphalt pavements. 

Much of the data had velocities that changed abruptly and excessively within the 

3.05 meters (10’) depth of investigation.  Often the velocities were not constant 

throughout a 30.48 cm (1’) interval so the recorded value had to be estimated.  Figure 6.6 

illustrates how Shear wave velocity estimations were recorded at each 30.48 cm (1’) 

depth interval when the velocity profile produced inconsistent (abruptly changing) data. 
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The author maintained a very detailed field log to ensure that he was relating the 

correct data to each pre and/or post blast areas.  Once all of the pre and post blast 

velocities were recorded, they were interpreted with Microsoft Excel.  Appendix B 

contains the blast parameters and the recorded velocities associated with each shot area 

that used the LV detonating cord in the boreholes.  The pre and post blast average 

velocities of each depth interval were then calculated and graphically plotted so one 

would be able to interpret the structural integrity of the stone before and after a blast. 

Similarly, Appendix C contains the blast parameters and the recorded velocities 

associated with each shot area that used the high velocity detonating cord in the 

boreholes.  The same interpretation process was conducted by averaging the pre and post 

blast velocities of each depth interval and graphically plotting them so one would be able 

to easily interpret the structural integrity of the stone before and after a blast. 

The recorded pre and post blast average depth interval velocities of each shot area 

in Appendices B and C were copied to Appendix D.  The 19 low velocity shots were 

compiled together in one chart.  Then the average post blast Shear wave velocity was 

subtracted from the average pre blast Shear wave velocity at each 30.48 cm (1’) depth 

interval.  These values were then averaged together at depth intervals of 30.48 cm (1’) 

into the deposit from the borehole location to calculate the “Delta Bar Interval Average” 

(DBIA).  This same procedure was done separately for the 20 shots that used the high 

velocity cord.  These values enabled the author to analyze the LV and HV shots 

separately by interpreting the average change in the Shear wave velocity at each depth 

interval away from the split line from 0-0.30 meters (0’-1’) to 2.13-2.44 meters (7’-8’).  

However, because the burden changed on every shot, the sample population decreased as 

the depth from the split line increased. 

The burden ranged from 0.61 to 2.13 meters (2’-7’), but typically the burden 

blasted away was 0.91 or 1.22 meters (3’ or 4’).  The burden on each shot was measured 

from the face where the pre blast survey geophones were located to the row of drilled 

blast holes.  This distance was then rounded to the nearest 30.48 cm (1’) because the 

author was specifically interested in determining the change in the Shear wave velocity 

within the stone deposit at depth intervals of 30.48 cm (1’) from the split line.   
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A post blast survey that showed a decrease in the Shear wave velocity indicated 

that the structural integrity of the stone had been compromised from the blast at that 

specific depth interval from the split line and one could then quantify the BID.  In this 

instance, the DBIA would be positive.  However, due to the presence of instrument and 

human error, a decrease in the Shear wave velocity of approximately 60 m/s (200 fps) 

was tolerated [Anderson, 2010] and the author only concluded that a significant amount 

of BID occurred when the DBIA was greater than 60 m/s (200 fps).  Conversely, a DBIA 

that was less than or equal to zero indicated that the post blast Shear wave velocity was 

higher than the pre blast Shear wave velocity.  In theory, this indicates that the blast 

improved the structural integrity of the stone.  The author attributes this to not having 

ideal MASW field parameters, not being experienced with the MASW software, and the 

constant change in geology of the region from weathered to non weathered stone. 

When pre blast MASW data were analyzed in the lab, very low seismic velocities 

were characteristic of the weathered areas.  A pre blast survey that was conducted on a 

virgin face would typically generate velocity profiles that were approximately 365-550 

m/s (1200-1800 fps).  Once the virgin rock was blasted away, a non weathered surface 

was exposed to conduct a post blast survey on.  The exposed non weathered surface was 

considerably more structurally competent than the virgin face, and the velocity profiles 

generated typically ranged from 610-1100 m/s (2000-3600 fps), depending on the region.  

Figure 6.7 illustrates this, not only showing how the integrity of the region changed 

through short distances, but also that the blasting practices that were implemented were 

properly splitting the stone and not damaging the strength of the remaining rock mass.  

For the purpose of this study, when the DBIA was less than or equal to the tolerance level 

of 60 m/s (200 fps), the author concluded that the shot did not significantly change the 

Shear wave velocity of the sandstone, and therefore no BID resulted from the shot. 

 Because the author determined that the velocity profiles generated on virgin faces 

were much different than those generated on non-virgin faces, a DBIA was calculated for 

“all shots inclusive,” for “only virgin faces,” as well as for “virgin faces excluded.”  

These values were then graphically plotted so one could easily compare them (Figures 

6.8 and 6.9). 
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 Upon investigation, these graphs did not seem accurate to the author and further 

interpretation was necessary to reach a conclusion about BID and the affect the 

explosives were having on the stone with some degree of accuracy or precision.  There 

was a wide statistical variance amongst the values that were used to generate the “Delta 

Bar Interval Averages” for both LV and HV shots.  The standard deviation shows how 

much variation there is from the sample’s average.  A low standard deviation indicates 

that the data points tend to be very close to the average, whereas a high standard 

deviation indicates that the data are spread out over a large range of values [Standard 

Deviation, 2010].  In theory, the standard deviation of each DBIA should have been very 

small indicating that the average change in the Shear wave velocity was similar from one 

shot area to the next at each depth interval away from the split line.  However, this was 

not the case as the shot areas’ interval averages used to generate the DBIAs displayed 

much variance.  The standard deviation of each DBIA was calculated in Appendix D.  

The sets of data produced using the low velocity cord varied as high as 277 m/s (909 fps) 

away from the DBIA, while the sets of data produced using the high velocity cord varied 

as high as 308 m/s (1012 fps) away from the DBIA.  To reduce the standard deviation of 

each DBIA, the author reanalyzed the data that are presented in Appendix B and C but 

eliminated values from the averages that were to be considered outliers.  In turn, this 

would construct new data that was normally distributed and would be much more 

manageable to formulate meaningful conclusions with. 

 The uncontrollable sources of error produced “noisy” data.  In turn, the velocity 

profiles were inconsistent at each depth interval as indicated by the high standard 

deviation of each DBIA.  Appendices B and C present the average pre and post blast 

Shear wave velocities of each depth interval specific to each shot area.  These values 

were calculated by averaging all of the Shear wave velocities that were recorded during 

the data processing of each shot area individually.  The velocities in each of these depth 

intervals were not normally distributed.  That is, though several of the recorded Shear 

wave velocities repeated themselves in each depth interval, many values varied 

significantly away from the normal, and skewed the calculated average Shear wave 

velocity in the depth interval.  These gross deviations were outliers [Kiemele, 1994] and 

prevented the author from generating accurate data.  To acquire a normal distribution at 
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each depth interval, the author used equation 6.1 [Kiemele, 1994] to eliminate the 

outliers. 

 

X ± (1.96)(s/√n)       Equation 6.1 

Where:  

 

 

 

Equation 6.1 eliminates values that deviate significantly away from the average 

Shear wave velocity with a 95% confidence level.  Any recorded value that was not 

within an allowable range (± 1.96*(s/√n)) of the overall depth interval Shear wave 

average velocity was excluded from the data set and not used to calculate the final 

average pre or post blast Shear wave velocity in that depth interval.  Table 6.1 illustrates 

a typical amount of recorded values that were ultimately determined outliers after 

applying Equation 6.1.  The values in red are the velocities that fell outside of that depth 

interval’s allowable range.  

Appendix E contains the blast parameters and the recorded velocities associated 

with each shot location that used the low velocity detonating cord in the boreholes once 

the outliers were defined but not included in the averages.  Similarly, Appendix F 

contains the blast parameters and the recorded velocities associated with each shot 

location that used the high velocity detonating cord in the boreholes once the outliers 

were defined but not included in the averages.  To graphically display the average pre and 

post blast Shear wave velocity at each depth interval of the newly constructed data, the 

same interpretation process that was conducted in Appendices B and C was completed in 

Appendices E and F so one would be able to easily interpret the structural integrity of the 

stone before and after a blast. 

 

X = average Shear wave velocity of the depth interval 
1.96 = 95% Confidence Interval constant 
s = standard deviation  
n = sample size 
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Table 6.1:  The red values are Shear wave velocities that were considered to be outliers.  
In the event any recorded value did not fall between the upper and lower limit of the 95% 
confidence level allowable range (gray values in the last two rows of each depth interval) 
the values were excluded from the depth interval data set and not used to calculate the 
average pre or post blast Shear wave velocity of that depth interval. 

Line 0-1’ 1-2’ 2-3’ 3-4’ 4-5’ 5-6’ 6-7’ 7-8’ 8-9’ 9-10’ 
1343 3200 3500 3600 3500 3500 2350 2350 2300 2300 2300 

1334 2500 2450 2450 2300 2250 2250 2300 2300 2450 2500 

1335 2500 2350 2250 2150 2000 2000 2500 2500 2600 2750 

1336 2600 2600 2600 2600 2600 2500 2500 2500 2500 2500 

1337 2750 2750 2750 2600 2600 2500 2500 2500 2550 2500 

95% CI + 2966 3130 3186 3089 3088 2502 2515 2516 2581 2650 

95% CI - 2454 2330 2274 2171 2092 2138 2345 2324 2379 2370 

           

1360 2000 2400 1900 1500 1650 2700 

1361 2100 1750 1400 1800 2850 3000 

1362 2500 3400 3200 2500 1500 1800 

1363 2700 2750 2900 2900 2650 2400 

1368 2150 1750 2250 3100 3250 2500 

1369 2250 1900 2200 2750 3000 2500 

1370 2600 2600 2700 2600 2350 2200 

1371 2400 2400 2450 2500 2300 2150 

95% CI + 2512 2762 2771 2833 2875 2657 

95% CI - 

Burden Blasted Away 

2163 1976 1979 2080 2012 2143 
 

 

The recorded average pre and post blast average velocities from Appendices E 

and F were copied to Appendix G, and the same procedure used on the values which 

included the outliers was conducted to calculate a “Delta Bar Interval Average” and a 

standard deviation of the new data set that eliminated the outliers.  The standard deviation 

was noticeably decreased, which indicated that the data were more consistent as they 

varied much less away from the DBIA and the author could then make meaningful 

conclusions.  As before, this procedure was carried out for the 19 shots that used the low 

velocity cord separately from the 20 shots that used the high velocity cord.  The author 



www.manaraa.com

92 
 

 
 

was able to collect data on the change in the Shear wave velocity from depth intervals of 

0-0.30 meters (0’-1’) to 1.52-1.83 meters (5’-6’) into the stone from the split line.   

An obvious problem with eliminating the outliers from the data was that the data 

were being manipulated in order to obtain meaningful and useful results.  Some of the 

shot areas that were reanalyzed in Appendices E and F include more values that were 

considered outliers than values that were used during interpretation.  The author 

questioned the statistical accuracy of eliminating so many values in the pre and post blast 

Shear wave velocity profiles.  However, due to the unique nature of this experiment, and 

the results formulated without excluding outliers from the data, it would have been very 

difficult for the author to make any conclusions on the performed work or make any 

recommendations for future research that could be performed.  The fact that so many 

values were determined to be outliers indicates that it is troublesome for the MASW 

method to generate consistent, high resolution, accurate data with this project’s unique 

field geometry as it was applied in a sedimentary rock which changed in structural nature 

within short distances, and possessed many reflective surfaces. 

With the outliers eliminated from the data, it was still evident that the velocity 

profiles generated on virgin faces were much different from those generated on non-

virgin faces.  Again a DBIA was calculated for “all shots inclusive,” for “only virgin 

faces,” as well as for “virgin faces excluded” (Figures 6.10 and 6.11). 

The LV cord worked very well overall.  Figure 6.10 shows that when low velocity 

cord was used to pre-split the sandstone, no BID was produced from the shot as the 

DBIAs are well below the tolerated level of approximately 60 m/s (200 fps) at every 

depth interval.  The average Shear wave velocity never decreased more 30 m/s (100 fps) 

at every depth interval when LV cord was used in the shots.  However, it was very 

interesting to notice that the change in the Shear wave velocities represented by the 

DBIAs increased after approximately the first meter (0’-3’) from the split line.  This is 

evidence that disturbance in the stone at depth intervals more than one meter from the 

split line was possibly occurring. 
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 Figure 6.11 shows that the high velocity cord also performed very well overall in 

this pre-splitting application as the change in the Shear wave velocity is consistently 

below the tolerated level of 60 m/s (200 fps) at every depth interval.  Again, this change 

should be tolerated considering the potential for instrument and human error.  Therefore, 

no significant BID can be determined when HV cord was used in this sandstone 

dimension stone quarry.  However, it was again very interesting to notice that the DBIAs 

peaked at depth intervals several meters into the stone from the split line.  This is 

evidence that the blast was disturbing the stone at depth intervals several meters from the 

split line, but not damaging the stone within the first meter from the boreholes where the 

explosives were placed. 

To confirm that the low velocity cord produces less BID than the HV cord, the 

author compared the LV cord to the HV cord individually for “all shots inclusive,” “only 

virgin faces,” as well as “virgin faces excluded.”  Figures 6.12-6.14 show how the 

explosives performed in this pre-splitting application and which cord created less 

decrease in the Shear wave velocity at each depth interval from the split line. 

 The graphical plots indicate that both cords generated little or no damage overall.  

The cords acted very similarly when all shots were included.  Never was the decrease in 

the Shear wave velocity more than approximately 60 m/s (200 fps) and this change can 

be tolerated considering the potential for instrument and human error.  However, this 

research showed that the DBIAs for both cords consistently peaked at depth intervals 

several meters from the split line, away from the borehole location where the detonating 

cord was in contact with the surface of the sandstone.  This potentially indicates a 

disturbance in the stone at these depths.  The author researched explosives applications in 

the mining industry to formulate theoretical considerations of the results which would 

answer if a disturbance at a depth within the rock was common, and this will be discussed 

in Section 7.   
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7. THEORETICAL CONSIDERATIONS OF THE RESULTS  

After the outliers were eliminated from each shot area’s pre and post blast 

averaged data, it was much easier to interpret results and formulate conclusions.  Once 

the DBIAs excluded the outliers from the recorded velocities, the author reanalyzed the 

change in the Shear wave velocity at each depth interval from the split line individually 

to determine exactly where BID was occurring within the stone for LV and HV shots 

separately.  The graphical plots generated during data interpretation (Figures 6.10-6.14) 

shows that both detonating cords work very well overall.  No BID can be determined 

within the 3.05 meters (10’) depth of investigation since the Shear wave velocity was not 

being decreased from the shots by more than 60 m/s (200 fps); this decrease was tolerated 

considering the potential for human and instrument error.  However, the author noticed 

that the Shear wave velocity was generally mostly decreased at depth intervals several 

meters into the stone indicating that the structural integrity of the stone was being 

disturbed from the shot at these locations within the sandstone but not closest to the 

borehole location where the explosive charges were placed.  To explain this phenomenon, 

the author speculated elastic rebound was occurring from the shots creating a disturbance 

in the structural integrity of the stone at depths several meters from the split line. 

 

7.1. SPECULATION OF ELASTIC REBOUND  

The main reason for this research was to determine whether or not the MASW 

method could be applied in mining and explosive engineering to monitor and quantify the 

BID produced at shallow depths into the stone from pre-split blasts.  Moreover, the 

author expected BID to be evident at depths closest to where the explosives were placed 

by comparing the pre and post blast MASW surveys and observing a decrease in the 

Shear wave velocity.  The Shear wave velocities of the pre and post blast surveys were 

expected to be practically identical at depths greater than approximately one meter (3’) 

from the blasted surface.  In turn, this would indicate that the structural integrity of the 

stone at depths greater than approximately one meter (3’) from the split line was not 

compromised from the blast, as illustrated in Figure 7.1.   
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Figure 7.1 is a comparison of the pre and post blast average Shear wave velocities 

at shot area 25 and the author expected most of the comparison graphs to resemble this.  

Within the first depth interval from the split line, the post blast average velocity 

decreased by 97.54 m/s (320 fps).  The post blast Shear wave velocity then closely 

resembles the pre blast average velocity curve for the remainder of the graph indicating 

that the structural integrity of the stone is unchanged at these depths away from the split 

line. 

However, the results from the data interpretation indicate that a pre-split blast 

may generate a decrease in the Shear wave velocity at depths several meters (3’-7’) from 

the split line, while it is not decreased at depths closest to the boreholes’ location, where 

the explosives were placed.   This disturbance at depth intervals several meters into the 

stone can be a common result when pre-splitting is conducted in sandstone geology 

[Worsey, 2006]. 

The sandstone geology at the experimental location included many natural 

fractures, joint sets and seams.  These geological features were essentially small air voids 

within the rock.  The joints and seams developed naturally as the sandstone mass was 

deposited and the fractures most likely resulted from previous blasting operations 

performed at the sandstone quarry directly adjacent to the experimental testing location.  

Many of these air voids were evident by observing the surface of the stone.  However, 

other air voids were certainly present that could not be detected, since they were very 

small or embedded within the stone and could not be seen on the surface of the rock.  

These air voids present in the sandstone deposit were potential areas that would allow 

elastic rebound to result from a pre-split blast [Worsey, 2006]. 

When the blast was initiated, the explosives provided a force onto the stone on 

both sides of the intended split line.  The energy from the explosives pushed the burden 

away from the deposit and produced a loaf of dimension stone.  The remainder of the 

stone in the deposit also reacted to the blast.  The air voids in the sandstone deposit were 

potential areas where the stone could be pushed to when the blast supplied energy onto 

the deposit at the borehole locations.  Rock is an elastic material.  As the stone in the 

deposit was pushed into these air voids, it came into contact with the remainder of the 



www.manaraa.com

102 
 

 
 

rock mass and then elastically rebounded away from the deposit to create an air void at 

that depth, several meters away from the split line (Figure 7.2).  The rock rebounded a 

distance more than the original width of the air void, making this void larger than it was 

before the blast when the pre blast MASW survey was conducted [Worsey, 2006]. 

The seams, joint sets, and fractures present in the experimental test location that 

were potential areas where elastic rebound could occur ranged from a few centimeters 

wide to planes that were fractions of a millimeter.  When the air voids were incredibly 

small, the pre blast MASW survey would not have detected this imperfection, and the 

Shear wave velocity would have remained generally uniform at every depth interval.  

However, after the rock elastically rebounded, and the small air voids were enlarged 

several meters away from the split line, the post blast survey was able to detect this area; 

therefore the Shear wave velocity profile showed an abrupt decrease at a depth interval 

several meters into the stone.  The Shear wave velocity would then gradually increase 

and eventually show a velocity profile equal to the recorded pre blast Shear wave 

velocity, several meters after the rebound location [Worsey, 2006].  Figure 7.3 is a 

comparison of the pre and post blast average Shear wave velocities at shot area 19.  The 

author found that the post blast Shear wave velocity profiles recorded from the MASW 

method would react in this manner in shot areas where there was potential for elastic 

rebound. 

  Elastic rebound is an important phenomenon for the Explosives Engineer to be 

aware of because it is disturbance of the structural integrity within the rock mass as a 

result of the blast.  Air voids that are enlarged as a result of elastic rebound create areas 

within the stone that are not cemented together and are structurally incompetent.  The 

natural features of the stone being blasted must be known to determine how the geology 

will react from the blast.  The blaster must properly design each shot accordingly to 

preserve the integrity of the product, and to create a pre-split that creates a safe work area 

at the mine.   
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Figure 7.2:  Cross Section of Sandstone before and after a Pre-split.
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8. CONCLUSIONS 

The main objective of this research experiment was to apply the MASW 

geophysical method to monitor and quantify Blast Induced Rock Damage that was 

produced from pre-splitting.  The obtained data would answer whether or not the MASW 

method could be used regularly in the mining and explosives industry to quantify BID 

which in turn could improve blast design and create safe high-wall working conditions in 

surface mines, preserve the structural integrity of the rock deposit left behind, or to 

produce saleable loaves at dimension stone quarries. 

The MASW geophysical method is relatively new technology that has a wide 

variety of applications.  It has been used in mining exploration to determine the depths 

and thicknesses of the geological strata at a potential mine site.  In these circumstances, 

typically the MASW instrumentation is spread linearly over a large area (10-30 meters) 

to image to depths as deep as 30 meters [Anderson, 2010].  It has been used extensively 

in the construction industry to develop information regarding the structural integrity of 

the subsurface or on much smaller scales in the transportation industry to identify 

damaged areas on asphalt or concrete pavements that are less than 15.24 cm (6”) thick at 

depth intervals of 7.62 cm (3”) with high resolution [Anderson, 2010].   

Considering the blast parameters and the corresponding MASW field geometry 

utilized in this project, the MASW data should have been analyzed at 7.62 cm (3”) depth 

intervals within approximately the first meter (3’) from the split line to determine where 

BID was occurring from the shot because pre-splitting will not produce radial fracturing 

to depths more than half the spacing between boreholes [Worsey, 2006].  Unfortunately, 

the troublesome geology at the experimental location made it difficult for the MASW 

software to interpret depth intervals smaller than 30.48 cm (1’) with as high of a 

resolution that is used to locate damaged zones on asphalt pavements [Anderson, 2010].  

The MASW software will provide high resolution on surfaces that are not weathered, that 

do not possess excessive reflection areas, and are of uniform thickness and strength 

[Anderson, 2010].  As these features were characteristic at the sandstone dimension stone 

quarry where this experiment was performed, this research could not take advantage of 

the MASW high resolution capabilities.  The physical properties of the surface that is 
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being imaged by the MASW equipment is one of the most influencing factors as one is 

attempting to gather high resolution data (e.g., to depths of 7.62 cm (3”)).  Because the 

geology at mine sites is typically weathered, possesses excessive reflection areas (e.g., 

joint sets, fractures, and karst features), and is rarely of uniform thickness and strength, 

the MASW method should not be applied to monitor and quantify BID. 

Because the MASW method cannot provide adequate resolution for this project, 

and considering the presence of instrumental and human error when processing the data, 

the author tolerated a decrease in the Shear wave velocity of 60 m/s (200 fps) before 

concluding that significant BID was resultant from the blast.  In light of this, the author 

concludes that both LV Prima-Shear and HV Fire-line detonating cords perform very 

well in pre-splitting applications and neither of them produces a significant amount of 

BID when used correctly.  However, the secondary objective of this experiment was to 

confirm that the low velocity cord produces less BID than the high velocity cord in pre-

splitting applications.  The Review of the Literature (see Section 2.3) indicated that the 

LV detonating cord will produce less pressure in the borehole during initiation which 

would yield less damage to the stone perpendicular to preferred split direction.  However, 

the author could not draw a conclusion as to which detonating cord produced less BID by 

comparing the MASW pre and post blast data specifically because of the uncontrollable 

sources of error present in the geology of the region which disrupted the resolution and 

quality of the MASW data.   

Though MASW is not applicable to monitor BID produced from pre-splitting, it is 

capable of performing on a larger scale to identify zones where existing joints or fractures 

have been enlarged from the blast.  Often there would be rapid decreases in the post blast 

Shear wave velocity several meters from the split line, allowing the author to speculate 

that elastic rebound had occurred from the blast.  Though the author did not intend to 

discover this phenomenon which is common when pre-splitting sedimentary stone, it is 

important to consider when blasting rock, for this disturbance at depths several meters 

from the borehole locations could compromise the structural integrity of the remaining 

rock mass or negatively influence the outcome of later shots performed in that area. 
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9. COMMENTS ON OPERATIONAL PROCEDURES AND 
RECOMMENDATIONS FOR POTENTIAL FUTURE WORK  

The author concluded that the MASW geophysical method is not applicable to 

monitor and quantify Blast Induced Rock Damage from pre-splitting applications due to 

problems that will result when the subsurface being imaged possesses excessive 

reflection areas and is of heterogeneous thicknesses and strengths.  Nonetheless, the 

MASW method is a very powerful geophysical tool when it is applied as it was intended 

for.  The following operational procedures must be considered when performing MASW 

fieldwork: 

To obtain meaningful information when applying the MASW geophysical 

method, a skilled geophysicist should process the data gathered from the field.  To better 

analyze the shot gathers, dispersion curves, and velocity profiles, the interpreter must be 

experienced with the MASW software and all of its capabilities.  

The MASW method is best performed in dry and warm conditions [Anderson, 

2010].  Therefore, this method should be performed in the dry summer months when 

heavy precipitation will not affect the quality of the data recorded. 

To obtain quality MASW data, the geophysicist must be mindful of the local 

geology.  Faults, fractures and anomalies present in the deposit significantly influence the 

quality of the obtained information [Anderson, 2010].  These features create reflective 

surfaces for the seismic wave energy to bounce off.  The MASW method produces the 

best results when it is performed in geological formations whose grains are very well 

cemented together, and do not possess any air voids in the stone -- such as karst features, 

natural bedding planes, joint sets, and/or fractures.  

When the MASW method is performed in strata that vary in thickness and 

strength (e.g., in mining exploration), it should apply the MASW field geometry 

recommended by the instrumentation’s manufacturer described in Section 2.6.2 of this 

report.  The spacing between geophones determines the shallowest depth of investigation, 

as they are equal to each other [Surf-Seis, 2006].  Therefore, when applying MASW to 

mining exploration, the equipment will produce the best results when it images a wide 
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area of land (10-30 meters (30’-100’)).  Likewise, the geophone spacing must be at least 

31.50 cm (12.41”) in these circumstances.     

The geophone spacing constraint discussed above further gives reason why 

MASW cannot be used to quantify BID from pre-splitting in heterogeneous material 

since ideally, to quantify BID, the depth intervals investigated should be approximately 

7.62 cm (3”) or less.  The experiment discussed in this report required the geophone 

spacing and array to be radically decreased in order to gather information specific to each 

1.52 meters (5’) section of blasted stone.  Though the MASW method did perform with 

this field geometry, high resolution data could not be acquired due to the troublesome 

geologic features characteristic in sandstone.  To monitor and quantify BID from pre-

splitting in heterogeneous material, different methods should be researched that will 

produce high resolution data when the experiment is performed over a larger scale (e.g., 

at least 10 meters wide).  The following operational procedures must be considered when 

performing future work with a different geotechnical method:   

Future work performed on a larger scale will demand that the drilling and blasting 

techniques be altered.  The pre-split “rules of thumb” given in the Section 2.1 of the 

Review of the Literature should still be applied.  Larger holes spaced farther apart will 

have to be implemented to effectively perform the experiment on a larger scale.  In turn, 

this potentially allows future work to research precise sequential timing by incorporating 

the velocity of crack propagation and the velocity of detonation into the blast design.  To 

do this, electronic initiation must be used with individual electronic blasting detonators 

tied to the “down-the-hole” explosive as they provide precise sequential timing.  The 

holes should be programmed to initiate sequentially at millisecond intervals that are 

determined by the time it takes the stress fields between adjacent holes to interact (see 

Section 2.1.1).     

Regardless of the geotechnical method that is used to gather BID data in future 

work, the sample population at each depth interval should be constant for the explosives 

being tested.  In the project discussed in this report, 19-20 values were used to calculate 

the DBIAs within approximately one meter (0’-3’) from the split line, while the depth 

intervals from 1.22-2.13 meters (4’-7’) from the split line were calculated with as little as 
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two values.  Using the blast design parameters that were applied to this project, the author 

concluded that the data should have been analyzed at 7.62 cm (3”) depth intervals to 

determine where BID was occurring from the shot within approximately the first meter 

(3’) from the split line.  A smaller depth of investigation would ensure that the sample 

population at each depth interval is constant because the burden blasted away should 

have been no less than approximately one meter (3’) with the blast parameters used in 

this experiment.   

The strength of the stone that was blasted in this project changed within very short 

distances.  Regardless of the geotechnical method that is further researched, all of the pre 

and post blast surveys should both be conducted on surfaces that have similar physical 

properties, therefore, the data can be interpreted as “all inclusive” rather than having to 

separate the shots performed on virgin faces from the shots performed on non-weathered 

stone.  The weathered rock capped the competent stone for approximately the first 0.91-

2.13 meters (3’-7’).  This significantly disrupted the quality of the MASW data and 

introduced variation into the experimental procedure.   

Variation in the experimental process creates data that are difficult to analyze and 

interpret.  As conducted in this experiment’s procedure, the researcher must make every 

attempt to minimize variation by keeping most of the variables constant and using 

maintained equipment, quality explosives, properly trained personnel, and a consistent, 

repetitive process.  Uncontrollable sources of variation can be minimized by performing 

the experiment in different conditions, and with specialty personnel. 

Different high resolution geotechnical methods need to be researched to obtain 

information regarding the structural integrity of a stone deposit before and after a blast.  

The data can then be compared to quantify the extent of BID that is being supplied by the 

explosives used in the blast design.  Future work potentially will determine a method that 

has the ability to perfect pre-splitting applications in any type of geology, but it is 

imperative to limit the variation present in the procedure to obtain reliable and 

meaningful information of the Blast Induced Rock Damage. 
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APPENDIX A 

MASW SHOT GATHERS, DISPERSION CURVES, AND VELOCITY PROFILES 
GENERATED FROM SURF-SEIS VERSION 2.05 
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1.  INTRODUCTION 

Included with this thesis is a CD-ROM, which contains the 270 sets of MASW 

data that was generated from conducting field work and from processing the data with the 

MASW software, Surf-Seis (Version 2.05).  Each shot gather acquired from the field 

produced one dispersion curve and one velocity profile.  Many sets of data were used for 

more than one pre and/or post blast survey.  Each data set indicates which pre and/or post 

blast survey it was used for when the Shear wave velocities were recorded.  All data sets 

are displayed in Microsoft Word 2007 document files.  To view the file, the reader must 

have a computer equipped with Adobe 2007. 

 

2.  CONTENTS 

Appendix A (MASW).pdf 
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APPENDIX B 

PRE AND POST BLAST MASW DATA AND SHOT PARAMETERS FO R ALL 
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APPENDIX D 

LV AND HV DELTA BAR INTERVAL AVERAGES AND STANDARD 
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APPENDIX E 

PRE AND POST BLAST MASW DATA AND SHOT PARAMETERS FO R ALL 
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APPENDIX F 
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APPENDIX G 

LV AND HV DELTA BAR INTERVAL AVERAGES AND STANDARD 
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www.manaraa.com

 

A.092:  Dispersion Curve Line 1092 used in Pre-blast 21 
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A.093: Velocity Profile Line 1092 used in Pre-blast 21 
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A.094: Shot Gather Line 1093 used in Pre-blast 21 
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A.095:  Dispersion Curve Line 1093 used in Pre-blast 21 
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A.096: Velocity Profile Line 1093 used in Pre-blast 21 
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A.097: Shot Gather Line 1102 used in Pre-blast 22 



www.manaraa.com

 

A.098:  Dispersion Curve Line 1102 used in Pre-blast 22 
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A.099: Velocity Profile Line 1102 used in Pre-blast 22 



www.manaraa.com

 

A.100: Shot Gather Line 1103 used in Pre-blast 22 
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A.101:  Dispersion Curve Line 1103 used in Pre-blast 22 
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A.102: Velocity Profile Line 1103 used in Pre-blast 22 
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A.103: Shot Gather Line 1105 used in Pre-blast 22 
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A.104:  Dispersion Curve Line 1105 used in Pre-blast 22 
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A.105: Velocity Profile Line 1105 used in Pre-blast 22 
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A.106: Shot Gather Line 1110 used in Pre-blast 22 
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A.107:  Dispersion Curve Line 1110 used in Pre-blast 22 
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A.108: Velocity Profile Line 1110 used in Pre-blast 22 
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A.109: Shot Gather Line 1111 used in Pre-blast 21 and Pre-blast 22 
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A.110:  Dispersion Curve Line 1111 used in Pre-blast 21 and Pre-blast 22 
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A.111: Velocity Profile Line 1111 used in Pre-blast 21 and Pre-blast 22 
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A.112: Shot Gather Line 1112 used in Pre-blast 21 and Pre-blast 22 
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A.113:  Dispersion Curve Line 1112 used in Pre-blast 21 and Pre-blast 22 
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A.114: Velocity Profile Line 1112 used in Pre-blast 21 and Pre-blast 22 
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A.115: Shot Gather Line 1113 used in Pre-blast 21 and Pre-blast 22 
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A.116:  Dispersion Curve Line 1113 used in Pre-blast 21 and Pre-blast 22 
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A.117: Velocity Profile Line 1113 used in Pre-blast 21 and Pre-blast 22 
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A.118: Shot Gather Line 1114 used in Post-blast 6 
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A.119:  Dispersion Curve Line 1114 used in Post-blast 6 
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A.120: Velocity Profile Line 1114 used in Post-blast 6 
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A.121: Shot Gather Line 1115 used in Post-blast 6 
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A.122:  Dispersion Curve Line 1115 used in Post-blast 6 
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A.123: Velocity Profile Line 1115 used in Post-blast 6 
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A.124: Shot Gather Line 1116 used in Post-blast 6 
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A.125:  Dispersion Curve Line 1116 used in Post-blast 6 
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A.126: Velocity Profile Line 1116 used in Post-blast 6 
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A.127: Shot Gather Line 1117 used in Post-blast 6 
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A.128:  Dispersion Curve Line 1117 used in Post-blast 6 
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A.129: Velocity Profile Line 1117 used in Post-blast 6 
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A.130: Shot Gather Line 1118 used in Post-blast 7 
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A.131:  Dispersion Curve Line 1118 used in Post-blast 7 
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A.132: Velocity Profile Line 1118 used in Post-blast 7 
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A.133: Shot Gather Line 1119 used in Post-blast 7 
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A.134:  Dispersion Curve Line 1119 used in Post-blast 7 
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A.135: Velocity Profile Line 1119 used in Post-blast 7 
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A.136: Shot Gather Line 1121 used in Post-blast 7 
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A.137:  Dispersion Curve Line 1121 used in Post-blast 7 
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A.138: Velocity Profile Line 1121 used in Post-blast 7 
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A.139: Shot Gather Line 1122 used in Post-blast 7 
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A.140:  Dispersion Curve Line 1122 used in Post-blast 7 



www.manaraa.com

 

A.141: Velocity Profile Line 1122 used in Post-blast 7 



www.manaraa.com

 

A.142: Shot Gather Line 1123 used in Post-blast 7 
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A.143:  Dispersion Curve Line 1123 used in Post-blast 7 
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A.144: Velocity Profile Line 1123 used in Post-blast 7 
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A.145: Shot Gather Line 1124 used in Post-blast 7 
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A.146:  Dispersion Curve Line 1124 used in Post-blast 7 
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A.147: Velocity Profile Line 1124 used in Post-blast 7 
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A.148: Shot Gather Line 1125 used in Post-blast 7 
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A.149:  Dispersion Curve Line 1125 used in Post-blast 7 



www.manaraa.com

 

A.150: Velocity Profile Line 1125 used in Post-blast 7 



www.manaraa.com

 

A.151: Shot Gather Line 1126 used in Post-blast 6 and Post-blast 7 
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A.152:  Dispersion Curve Line 1126 used in Post-blast 6 and Post-blast 7 
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A.153: Velocity Profile Line 1126 used in Post-blast 6 and Post-blast 7 
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A.154: Shot Gather Line 1127 used in Post-blast 6 and Post-blast 7 
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A.155:  Dispersion Curve Line 1127 used in Post-blast 6 and Post-blast 7 
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A.156: Velocity Profile Line 1127 used in Post-blast 6 and Post-blast 7 
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A.157: Shot Gather Line 1128 used in Post-blast 6 and Post-blast 7 
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A.158:  Dispersion Curve Line 1128 used in Post-blast 6 and Post-blast 7 
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A.159: Velocity Profile Line 1128 used in Post-blast 6 and Post-blast 7 
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A.160: Shot Gather Line 1129 used in Post-blast 6 and Post-blast 7 
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A.161:  Dispersion Curve Line 1129 used in Post-blast 6 and Post-blast 7 
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A.162: Velocity Profile Line 1129 used in Post-blast 6 and Post-blast 7 
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A.163: Shot Gather Line 1130 used in Post-blast 8 
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A.164:  Dispersion Curve Line 1130 used in Post-blast 8 
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A.165: Velocity Profile Line 1130 used in Post-blast 8 
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A.166: Shot Gather Line 1131 used in Post-blast 8 
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A.167:  Dispersion Curve Line 1131 used in Post-blast 8 
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A.168: Velocity Profile Line 1131 used in Post-blast 8 
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A.169: Shot Gather Line 1134 used in Post-blast 8 
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A.170:  Dispersion Curve Line 1134 used in Post-blast 8 
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A.171: Velocity Profile Line 1134 used in Post-blast 8 
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A.172: Shot Gather Line 1136 used in Post-blast 8 
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A.173:  Dispersion Curve Line 1136 used in Post-blast 8 
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A.174: Velocity Profile Line 1136 used in Post-blast 8 
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A.175: Shot Gather Line 1138 used in Post-blast 8 and Post-blast 9 
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A.176:  Dispersion Curve Line 1138 used in Post-blast 8 and Post-blast 9 
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A.177: Velocity Profile Line 1138 used in Post-blast 8 and Post-blast 9 
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A.178: Shot Gather Line 1139 used in Post-blast 9 
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A.179:  Dispersion Curve Line 1139 used in Post-blast 9 
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A.180: Velocity Profile Line 1139 used in Post-blast 9 
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A.181: Shot Gather Line 1143 used in Post-blast 8 and Post-blast 9 
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A.182:  Dispersion Curve Line 1143 used in Post-blast 8 and Post-blast 9 



www.manaraa.com

 

A.183: Velocity Profile Line 1143 used in Post-blast 8 and Post-blast 9 
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A.184: Shot Gather Line 1144 used in Post-blast 8 and Post-blast 9 
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A.185:  Dispersion Curve Line 1144 used in Post-blast 8 and Post-blast 9 
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A.186: Velocity Profile Line 1144 used in Post-blast 8 and Post-blast 9 
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A.187: Shot Gather Line 1145 used in Post-blast 8 and Post-blast 9 
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A.188:  Dispersion Curve Line 1145 used in Post-blast 8 and Post-blast 9 
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A.189: Velocity Profile Line 1145 used in Post-blast 8 and Post-blast 9 



www.manaraa.com

 

A.190: Shot Gather Line 1146 used in Post-blast 9 
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A.191:  Dispersion Curve Line 1146 used in Post-blast 9 
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A.192: Velocity Profile Line 1146 used in Post-blast 9 
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A.193: Shot Gather Line 1147 used in Post-blast 9 
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A.194:  Dispersion Curve Line 1147 used in Post-blast 9 
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A.195: Velocity Profile Line 1147 used in Post-blast 9 
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A.196: Shot Gather Line 1148 used in Post-blast 9 
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A.197:  Dispersion Curve Line 1148 used in Post-blast 9 
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A.198: Velocity Profile Line 1148 used in Post-blast 9 
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A.199: Shot Gather Line 1150 used in Post-blast 9 
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A.200:  Dispersion Curve Line 1150 used in Post-blast 9 
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A.201: Velocity Profile Line 1150 used in Post-blast 9 
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A.202: Shot Gather Line 1154 used in Post-blast 16 
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A.203:  Dispersion Curve Line 1154 used in Post-blast 16 
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A.204: Velocity Profile Line 1154 used in Post-blast 16 
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A.205: Shot Gather Line 1158 used in Post-blast 16 
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A.206:  Dispersion Curve Line 1158 used in Post-blast 16 
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A.207: Velocity Profile Line 1158 used in Post-blast 16 
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A.208: Shot Gather Line 1160 used in Post-blast 16 
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A.209:  Dispersion Curve Line 1160 used in Post-blast 16 
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A.210: Velocity Profile Line 1160 used in Post-blast 16 
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A.211: Shot Gather Line 1161 used in Post-blast 16 
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A.212:  Dispersion Curve Line 1161 used in Post-blast 16 
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A.213: Velocity Profile Line 1161 used in Post-blast 16 
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A.214: Shot Gather Line 1163 used in Post-blast 17 
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A.215:  Dispersion Curve Line 1163 used in Post-blast 17 
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A.216: Velocity Profile Line 1163 used in Post-blast 17 
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A.217: Shot Gather Line 1164 used in Post-blast 17 



www.manaraa.com

 

A.218:  Dispersion Curve Line 1164 used in Post-blast 17 
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A.219: Velocity Profile Line 1164 used in Post-blast 17 
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A.220: Shot Gather Line 1165 used in Post-blast 17 
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A.221:  Dispersion Curve Line 1165 used in Post-blast 17 
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A.222: Velocity Profile Line 1165 used in Post-blast 17 
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A.223: Shot Gather Line 1167 used in Post-blast 17 
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A.224:  Dispersion Curve Line 1167 used in Post-blast 17 
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A.225: Velocity Profile Line 1167 used in Post-blast 17 
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A.226: Shot Gather Line 1172 used in Post-blast 18 
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A.227:  Dispersion Curve Line 1172 used in Post-blast 18 
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A.228: Velocity Profile Line 1172 used in Post-blast 18 
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A.229: Shot Gather Line 1173 used in Post-blast 18 



www.manaraa.com

 

A.230:  Dispersion Curve Line 1173 used in Post-blast 18 
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A.231: Velocity Profile Line 1173 used in Post-blast 18 
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A.232: Shot Gather Line 1174 used in Post-blast 17 
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A.233:  Dispersion Curve Line 1174 used in Post-blast 17 
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A.234: Velocity Profile Line 1174 used in Post-blast 17 
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A.235: Shot Gather Line 1175 used in Post-blast 17 and Post-blast 18 
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A.236:  Dispersion Curve Line 1175 used in Post-blast 17 and Post-blast 18 
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A.237: Velocity Profile Line 1175 used in Post-blast 17 and Post-blast 18 
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A.238: Shot Gather Line 1177 used in Post-blast 17  
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A.239:  Dispersion Curve Line 1177 used in Post-blast 17  
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A.240: Velocity Profile Line 1177 used in Post-blast 17  
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A.241: Shot Gather Line 1178 used in Post-blast 16 and Post-blast 17  
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A.242:  Dispersion Curve Line 1178 used in Post-blast 16 and Post-blast 17 
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A.243: Velocity Profile Line 1178 used in Post-blast 16 and Post-blast 17 
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A.244: Shot Gather Line 1179 used in Post-blast 16 and Post-blast 17 
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A.245:  Dispersion Curve Line 1179 used in Post-blast 16 and Post-blast 17 



www.manaraa.com

 

A.246: Velocity Profile Line 1179 used in Post-blast 16 and Post-blast 17 
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A.247: Shot Gather Line 1180 used in Post-blast 16 and Post-blast 17 
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A.248:  Dispersion Curve Line 1180 used in Post-blast 16 and Post-blast 17 
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A.249: Velocity Profile Line 1180 used in Post-blast 16 and Post-blast 17 
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A.250: Shot Gather Line 1181 used in Post-blast 17  
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A.251:  Dispersion Curve Line 1181 used in Post-blast 17  
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A.252: Velocity Profile Line 1181 used in Post-blast 17  
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A.253: Shot Gather Line 1186 used in Post-blast 21 and Pre-blast 23
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A.254:  Dispersion Curve Line 1186 used in Post-blast 21 and Pre-blast 23 
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A.255: Velocity Profile Line 1186 used in Post-blast 21 and Pre-blast 23 
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A.256: Shot Gather Line 1187 used in Post-blast 21 and Pre-blast 23 
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A.257:  Dispersion Curve Line 1187 used in Post-blast 21 and Pre-blast 23 
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A.258: Velocity Profile Line 1187 used in Post-blast 21 and Pre-blast 23 
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A.259: Shot Gather Line 1188 used in Post-blast 21 and Pre-blast 23 
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A.260:  Dispersion Curve Line 1188 used in Post-blast 21 and Pre-blast 23 
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A.261: Velocity Profile Line 1188 used in Post-blast 21 and Pre-blast 23 
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A.262: Shot Gather Line 1189 used in Post-blast 21 and Pre-blast 23 
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A.263:  Dispersion Curve Line 1189 used in Post-blast 21 and Pre-blast 23 
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A.264: Velocity Profile Line 1189 used in Post-blast 21 and Pre-blast 23 
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A.265: Shot Gather Line 1198 used in Post-blast 22 and Pre-blast 24
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A.266:  Dispersion Curve Line 1198 used in Post-blast 22 and Pre-blast 24 
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A.267: Velocity Profile Line 1198 used in Post-blast 22 and Pre-blast 24 
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A.268: Shot Gather Line 1199 used in Post-blast 22 and Pre-blast 24 
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A.269:  Dispersion Curve Line 1199 used in Post-blast 22 and Pre-blast 24 
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A.270: Velocity Profile Line 1199 used in Post-blast 22 and Pre-blast 24 
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A.271: Shot Gather Line 1200 used in Post-blast 22 and Pre-blast 24 
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A.272:  Dispersion Curve Line 1200 used in Post-blast 22 and Pre-blast 24 
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A.273: Velocity Profile Line 1200 used in Post-blast 22 and Pre-blast 24
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A.274: Shot Gather Line 1201 used in Post-blast 22 and Pre-blast 24 
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A.275:  Dispersion Curve Line 1201 used in Post-blast 22 and Pre-blast 24 
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A.276: Velocity Profile Line 1201 used in Post-blast 22 and Pre-blast 24 
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A.277: Shot Gather Line 1202 used in Pre-blast 19, Post-blast 23 and Pre-blast 25
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A.278:  Dispersion Curve Line 1202 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.279: Velocity Profile Line 1202 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.280: Shot Gather Line 1203 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.281:  Dispersion Curve Line 1203 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.282: Velocity Profile Line 1203 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.283: Shot Gather Line 1204 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.284:  Dispersion Curve Line 1204 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.285: Velocity Profile Line 1204 used in Pre-blast 19, Post-blast 23 and Pre-blast 25
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A.286: Shot Gather Line 1205 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.285:  Dispersion Curve Line 1205 used in Pre-blast 19, Post-blast 23 and Pre-blast 25 
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A.286: Velocity Profile Line 1205 used in Pre-blast 19, Post-blast 23 and Pre-blast 25
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A.286: Shot Gather Line 1206 used in Pre-blast 15, Post-blast 24 and Pre-blast 26
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A.290:  Dispersion Curve Line 1206 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.291: Velocity Profile Line 1206 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.292: Shot Gather Line 1207 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.293:  Dispersion Curve Line 1207 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.294: Velocity Profile Line 1207 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.295: Shot Gather Line 1208 used in Pre-blast 15, Post-blast 24 and Pre-blast 26
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A.296:  Dispersion Curve Line 1208 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.297: Velocity Profile Line 1208 used in Pre-blast 15, Post-blast 24 and Pre-blast 26 
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A.298: Shot Gather Line 1214 used in Post-blast 12 and Pre-blast 27 
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A.299:  Dispersion Curve Line 1214 used in Post-blast 12 and Pre-blast 27 
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A.300: Velocity Profile Line 1214 used in Post-blast 12 and Pre-blast 27 
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A.301: Shot Gather Line 1216 used in Post-blast 12 
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A.302:  Dispersion Curve Line 1216 used in Post-blast 12  
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A.304: Velocity Profile Line 1216 used in Post-blast 12 
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A.304: Shot Gather Line 1219 used in Pre-blast 27 
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A.305:  Dispersion Curve Line 1219 used in Pre-blast 27  
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A.306:  Velocity Profile Line 1219 used in Pre-blast 27  
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A.307: Shot Gather Line 1221 used in Post-blast 12 and Pre-blast 27 
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A.308:  Dispersion Curve Line 1221 used in Post-blast 12 and Pre-blast 27 
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A.309:  Velocity Profile Line 1221 used in Post-blast 12 and Pre-blast 27 
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A.310: Shot Gather Line 1222 used in Post-blast 12 and Pre-blast 27 
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A.311: Dispersion Curve Line 1222 used in Post-blast 12 and Pre-blast 27 
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A.312: Velocity Profile Line 1222 used in Post-blast 12 and Pre-blast 27 
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A.313: Shot Gather Line 1224 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.314: Dispersion Curve Line 1224 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.315: Velocity Profile Line 1224 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 



www.manaraa.com

 

A.316: Shot Gather Line 1225 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.317: Dispersion Curve Line 1225 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.318: Velocity Profile Line 1225 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.319: Shot Gather Line 1227 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 



www.manaraa.com

 

A.320: Dispersion Curve Line 1227 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 



www.manaraa.com

 

A.321: Velocity Profile Line 1227 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.322: Shot Gather Line 1228 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.323: Dispersion Curve Line 1228 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.324: Velocity Profile Line 1228 used in Post-blast 13, Pre-blast 14 and Pre-blast 28 
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A.325: Shot Gather Line 1237 used in Post-blast 13, Post-blast 14 and Pre-blast 29 
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A.326: Dispersion Curve Line 1237 used in Post-blast 13, Post-blast 14 and Pre-blast 29 
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A.327: Velocity Profile Line 1237 used in Post-blast 13, Post-blast 14 and Pre-blast 29 
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A.328: Shot Gather Line 1240 used in Post-blast 14 
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A.329: Dispersion Curve Line 1240 used in Post-blast 14 
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A.330: Velocity Profile Line 1240 used in Post-blast 14 
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A.331: Shot Gather Line 1241 used in Post-blast 14 and Pre-blast 29 
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A.332: Dispersion Curve Line 1241 used in Post-blast 14 and Pre-blast 29 
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A.333: Velocity Profile Line 1241 used in Post-blast 14 and Pre-blast 29 
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A.334: Shot Gather Line 1243 used in Post-blast 14 and Pre-blast 29 
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A.335: Dispersion Curve Line 1243 used in Post-blast 14 and Pre-blast 29 
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A.336: Velocity Profile Line 1243 used in Post-blast 14 and Pre-blast 29 
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A.337: Shot Gather Line 1245 used in Post-blast 14 
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A.338: Dispersion Curve Line 1245 used in Post-blast 14  
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A.339: Velocity Profile Line 1245 used in Post-blast 14  



www.manaraa.com

 

A.340: Shot Gather Line 1248 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.341: Dispersion Curve Line 1248 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.342: Velocity Profile Line 1248 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.343: Shot Gather Line 1250 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.344: Dispersion Curve Line 1250 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.345: Velocity Profile Line 1250 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.346: Shot Gather Line 1252 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.347: Dispersion Curve Line 1252 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.348: Velocity Profile Line 1252 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.349: Shot Gather Line 1253 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.350: Dispersion Curve Line 1253 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.351: Velocity Profile Line 1253 used in Post-blast 15 and Pre-blast 29  



www.manaraa.com

 

A.352: Shot Gather Line 1257 used in Pre-blast 12, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.353: Dispersion Curve Line 1257 used in Pre-blast 12, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.354: Velocity Profile Line 1257 used in Pre-blast 12, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.355: Shot Gather Line 1258 used in Pre-blast 12, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.356: Dispersion Curve Line 1258 used in Pre-blast 12, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.357: Velocity Profile Line 1258 used in Pre-blast 12, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.358: Shot Gather Line 1259 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-
blast 30 



www.manaraa.com

 

A.359: Dispersion Curve Line 1259 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.360: Velocity Profile Line 1259 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.361: Shot Gather Line 1260 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-
blast 30 



www.manaraa.com

 

A.362: Dispersion Curve Line 1260 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.363: Velocity Profile Line 1260 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.364: Shot Gather Line 1261 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.365: Dispersion Curve Line 1261 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.366: Velocity Profile Line 1261 used in Post-blast 15 and Pre-blast 29 



www.manaraa.com

 

A.367: Shot Gather Line 1262 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-
blast 30 



www.manaraa.com

 

A.368: Dispersion Curve Line 1262 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.369: Velocity Profile Line 1262 used in Pre-blast 12, Post-blast 15, Pre-blast 29 and Pre-blast 30 



www.manaraa.com

 

A.370: Shot Gather Line 1263 used in Post-blast 25 



www.manaraa.com

 

A.371: Dispersion Curve Line 1263 used in Post-blast 25 



www.manaraa.com

 

A.372: Velocity Profile Line 1263 used in Post-blast 25 



www.manaraa.com

 

A.373: Shot Gather Line 1264 used in Post-blast 25 



www.manaraa.com

 

A.374: Dispersion Curve Line 1264 used in Post-blast 25 



www.manaraa.com

 

A.375: Velocity Profile Line 1264 used in Post-blast 25 



www.manaraa.com

 

A.376: Shot Gather Line 1265 used in Post-blast 25 



www.manaraa.com

 

A.377: Dispersion Curve Line 1265 used in Post-blast 25 



www.manaraa.com

 

A.378: Velocity Profile Line 1265 used in Post-blast 25 



www.manaraa.com

 

A.379: Shot Gather Line 1266 used in Post-blast 25 



www.manaraa.com

 

A.380: Dispersion Curve Line 1266 used in Post-blast 25 



www.manaraa.com

 

A.381: Velocity Profile Line 1266 used in Post-blast 25 



www.manaraa.com

 

A.382: Shot Gather Line 1267 used in Post-blast 25 



www.manaraa.com

 

A.383: Dispersion Curve Line 1267 used in Post-blast 25 



www.manaraa.com

 

A.384: Velocity Profile Line 1267 used in Post-blast 25 



www.manaraa.com

 

A.385: Shot Gather Line 1268 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.386: Dispersion Curve Line 1268 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.387: Velocity Profile Line 1268 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.388: Shot Gather Line 1269 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.389: Dispersion Curve Line 1269 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.390: Velocity Profile Line 1269 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.391: Shot Gather Line 1270 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.392: Dispersion Curve Line 1270 used in Pre-blast 12, Pre-blast 30 



www.manaraa.com

 

A.393: Velocity Profile Line 1270 used in Pre-blast 12, Pre-blast 30



www.manaraa.com

 

A.394: Shot Gather Line 1273 used in Pre-blast 35 



www.manaraa.com

 

A.395: Dispersion Curve Line 1273 used in Pre-blast 35 



www.manaraa.com

 

 

A.396: Velocity Profile Line 1273 used in Pre-blast 35 



www.manaraa.com

 

A.397: Shot Gather Line 1274 used in Pre-blast 35 



www.manaraa.com

 

A.398: Dispersion Curve Line 1274 used in Pre-blast 35 



www.manaraa.com

 

 

A.399: Velocity Profile Line 1274 used in Pre-blast 35 



www.manaraa.com

 

A.400: Shot Gather Line 1276 used in Post-blast 25 and Pre-blast 35



www.manaraa.com

 

A.401: Dispersion Curve Line 1276 used in Post-blast 25 and Pre-blast 35 



www.manaraa.com

 

A.402: Velocity Profile Line 1276 used in Post-blast 25 and Pre-blast 35



www.manaraa.com

 

A.403: Shot Gather Line 1277 used in Post-blast 25 and Pre-blast 35



www.manaraa.com

 

A.404: Dispersion Curve Line 1277 used in Post-blast 25 and Pre-blast 35 



www.manaraa.com

 

A.405: Velocity Profile Line 1277 used in Post-blast 25 and Pre-blast 35 



www.manaraa.com

 

A.406: Shot Gather Line 1278 used in Pre-blast 12 and Post-blast 26 



www.manaraa.com

 

 

A.407: Dispersion Curve Line 1278 used in Pre-blast 12 and Post-blast 26 



www.manaraa.com

 

A.408: Velocity Profile Line 1278 used in Pre-blast 12 and Post-blast 26 



www.manaraa.com

 

A.409: Shot Gather Line 1279 used in Pre-blast 12, Post-blast 26, Pre-blast 30 and Pre-
blast 35



www.manaraa.com

 

A.410: Dispersion Curve Line 1279 used in Pre-blast 12, Post-blast 26, Pre-blast 30, and Pre-blast 35 



www.manaraa.com

 

A.411: Velocity Profile Line 1279 used in Pre-blast 12, Post-blast 26, Pre-blast 30 and Pre-blast 35 



www.manaraa.com

 

A.412: Shot Gather Line 1280 used in Post-blast 20 



www.manaraa.com

 

A.413: Dispersion Curve Line 1280 used in Post-blast 20 



www.manaraa.com

 

A.414: Velocity Profile Line 1280 used in Post-blast 20 



www.manaraa.com

 

A.415: Shot Gather Line 1281 used in Post-blast 20 



www.manaraa.com

 

A.416: Dispersion Curve Line 1281 used in Post-blast 20 



www.manaraa.com

 

A.417: Velocity Profile Line 1281 used in Post-blast 20 



www.manaraa.com

 

A.418: Shot Gather Line 1282 used in Post-blast 20 and Pre-blast 27 

 



www.manaraa.com

 

A.419: Dispersion Curve Line 1282 used in Post-blast 20 and Pre-blast 27 



www.manaraa.com

 

A.420: Velocity Profile Line 1282 used in Post-blast 20 and Pre-blast 27 



www.manaraa.com

 

A.421: Shot Gather Line 1283 used in Post-blast 20 and Pre-blast 27 



www.manaraa.com

 

A.422: Dispersion Curve Line 1283 used in Post-blast 20 and Pre-blast 27 



www.manaraa.com

 

A.423: Velocity Profile Line 1283 used in Post-blast 20 and Pre-blast 27 



www.manaraa.com

 

A.424: Shot Gather Line 1286 used in Pre-blast 14 and Pre-blast 28 



www.manaraa.com

 

A.425: Dispersion Curve Line 1286 used in Pre-blast 14 and Pre-blast 28



www.manaraa.com

 

A.426: Velocity Profile Line 1286 used in Pre-blast 14 and Pre-blast 28



www.manaraa.com

 

A.427: Shot Gather Line 1287 used in Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.428: Dispersion Curve Line 1287 used in Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.429: Velocity Profile Line 1287 used in Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.430: Shot Gather Line 1290 used in Post-blast 19  



www.manaraa.com

 

A.431: Dispersion Curve Line 1290 used in Post-blast 19  



www.manaraa.com

 

A.432: Velocity Profile Line 1290 used in Post-blast 19  



www.manaraa.com

 

A.433: Shot Gather Line 1291 used in Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.434: Dispersion Curve Line 1291 used in Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.435: Velocity Profile Line 1291 used in Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

 

A.436: Shot Gather Line 1292 used in Pre-blast 14, Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.437: Dispersion Curve Line 1292 used in Pre-blast 14, Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.438: Velocity Profile Line 1292 used in Pre-blast 14, Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.439: Shot Gather Line 1293 used in Pre-blast 14, Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.440: Dispersion Curve Line 1293 used in Pre-blast 14, Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.441: Velocity Profile Line 1293 used in Pre-blast 14, Post-blast 19 and Pre-blast 28 



www.manaraa.com

 

A.442: Shot Gather Line 1295 used in Post-blast 11 



www.manaraa.com

 

A.443: Dispersion Curve Line 1295 used in Post-blast 11 



www.manaraa.com

 

 

A.444: Velocity Profile Line 1295 used in Post-blast 11 



www.manaraa.com

 

A.445: Shot Gather Line 1296 used in Post-blast 11 



www.manaraa.com

 

A.446: Dispersion Curve Line 1296 used in Post-blast 11 



www.manaraa.com

 

 

A.447: Velocity Profile Line 1296 used in Post-blast 11 



www.manaraa.com

 

A.448: Shot Gather Line 1297 used in Post-blast 11 



www.manaraa.com

 

A.449: Dispersion Curve Line 1297 used in Post-blast 11 



www.manaraa.com

 

 

A.450: Velocity Profile Line 1297 used in Post-blast 11 



www.manaraa.com

 

A.451: Shot Gather Line 1298 used in Post-blast 11 and Post-blast 27 



www.manaraa.com

 

A.452: Dispersion Curve Line 1298 used in Post-blast 11 and Post-blast 27 



www.manaraa.com

 

A.453: Velocity Profile Line 1298 used in Post-blast 11 and Post-blast 27 



www.manaraa.com

 

A.454: Shot Gather Line 1299 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.455: Dispersion Curve Line 1299 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

 

A.456: Velocity Profile Line 1299 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.457: Shot Gather Line 1300 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.458: Dispersion Curve Line 1300 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

 

A.459: Velocity Profile Line 1300 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.460: Shot Gather Line 1301 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.461: Dispersion Curve Line 1301 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.462: Velocity Profile Line 1301 used in Post-blast 11, Post-blast 27 and Pre-blast 31 



www.manaraa.com

 

A.463: Shot Gather Line 1302 used in Post-blast 27  



www.manaraa.com

 

A.464: Dispersion Curve Line 1302 used in Post-blast 27  



www.manaraa.com

 

 

A.465: Velocity Profile Line 1302 used in Post-blast 27  



www.manaraa.com

 

A.466: Shot Gather Line 1303 used in Pre-blast 31  



www.manaraa.com

 

A.467: Dispersion Curve Line 1303 used in Pre-blast 31 



www.manaraa.com

 

A.468: Velocity Profile Line 1303 used in Pre-blast 31  



www.manaraa.com

 

A.469: Shot Gather Line 1304 used in Pre-blast 31  



www.manaraa.com

 

A.470: Dispersion Curve Line 1304 used in Pre-blast 31 



www.manaraa.com

 

 

A.471: Velocity Profile Line 1304 used in Pre-blast 31  



www.manaraa.com

 

A.472: Shot Gather Line 1305 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

A.473: Dispersion Curve Line 1305 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

 

A.474: Velocity Profile Line 1305 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

A.475: Shot Gather Line 1306 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

A.476: Dispersion Curve Line 1306 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

 

A.477: Velocity Profile Line 1306 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

 

A.478: Shot Gather Line 1307 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

A.479: Dispersion Curve Line 1307 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

 

A.480: Velocity Profile Line 1307 used in Post-blast 27 and Pre-blast 31  



www.manaraa.com

 

A.481: Shot Gather Line 1310 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.482: Dispersion Curve Line 1310 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.483: Velocity Profile Line 1310 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.484: Shot Gather Line 1314 used in Pre-blast 14  



www.manaraa.com

 

A.485: Dispersion Curve Line 1314 used in Pre-blast 14  



www.manaraa.com

 

 

A.486: Velocity Profile Line 1314 used in Pre-blast 14  



www.manaraa.com

 

 

A.487: Shot Gather Line 1315 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.488: Dispersion Curve Line 1315 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

 

A.489: Velocity Profile Line 1315 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.490: Shot Gather Line 1316 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.491: Dispersion Curve Line 1316 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.492: Velocity Profile Line 1316 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

 

A.493: Shot Gather Line 1317 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.494: Dispersion Curve Line 1317 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.495: Velocity Profile Line 1317 used in Pre-blast 13, Post-blast 28 and Pre-blast 32  



www.manaraa.com

 

A.496: Shot Gather Line 1318 used in Pre-blast 33  



www.manaraa.com

 

A.497: Dispersion Curve Line 1318 used in Pre-blast 33  



www.manaraa.com

 

 

A.498: Velocity Profile Line 1318 used in Pre-blast 33  



www.manaraa.com

 

A.499: Shot Gather Line 1321 used in Pre-blast 33  



www.manaraa.com

 

A.500: Dispersion Curve Line 1321 used in Pre-blast 33  



www.manaraa.com

 

A.501: Velocity Profile Line 1321 used in Pre-blast 33  



www.manaraa.com

 

A.502: Shot Gather Line 1322 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.503: Dispersion Curve Line 1322 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

 

A.504: Velocity Profile Line 1322 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.505: Shot Gather Line 1323 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.506: Dispersion Curve Line 1323 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

 

A.507: Velocity Profile Line 1323 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.508: Shot Gather Line 1324 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.509: Dispersion Curve Line 1324 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.510: Velocity Profile Line 1324 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.511: Shot Gather Line 1326 used in Pre-blast 13, Post-blast 28, Post-blast 29, Pre-blast 
32, and Pre-blast 33  



www.manaraa.com

 

A.512: Dispersion Curve Line 1326 used in Pre-blast 13, Post-blast 28, Post-blast 29, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.513: Velocity Profile Line 1326 used in Pre-blast 13, Post-blast 28, Post-blast 29, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.514: Shot Gather Line 1327 used in Pre-blast 13, Post-blast 29, Pre-blast 32, and Pre-
blast 33  



www.manaraa.com

 

A.515: Dispersion Curve Line 1327 used in Pre-blast 13, Post-blast 29, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.516: Velocity Profile Line 1327 used in Pre-blast 13, Post-blast 29, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.517: Shot Gather Line 1328 used in Pre-blast 13, Post-blast 28, Post-blast 29, Pre-blast 
32, and Pre-blast 33  



www.manaraa.com

 

A.518: Dispersion Curve Line 1328 used in Pre-blast 13, Post-blast 28, Post-blast 29, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.519: Velocity Profile Line 1328 used in Pre-blast 13, Post-blast 28, Post-blast 29, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.520: Shot Gather Line 1329 used in Post-blast 29  



www.manaraa.com

 

A.521: Dispersion Curve Line 1329 used in Post-blast 29  



www.manaraa.com

 

A.522: Velocity Profile Line 1329 used in Post-blast 29  



www.manaraa.com

 

A.523: Shot Gather Line 1330 used in Post-blast 28  



www.manaraa.com

 

A.524: Dispersion Curve Line 1330 used in Post-blast 28  



www.manaraa.com

 

A.525: Velocity Profile Line 1330 used in Post-blast 28  



www.manaraa.com

 

A.526: Shot Gather Line 1331 used in Pre-blast 13, Post-blast 28, Pre-blast 32, and Pre-
blast 33  



www.manaraa.com

 

A.527: Dispersion Curve Line 1331 used in Pre-blast 13, Post-blast 28, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.528: Velocity Profile Line 1331 used in Pre-blast 13, Post-blast 28, Pre-blast 32, and Pre-blast 33  



www.manaraa.com

 

A.529: Shot Gather Line 1334 used in Pre-blast 34  



www.manaraa.com

 

A.530: Dispersion Curve Line 1334 used in Pre-blast 34  



www.manaraa.com

 

A.531: Velocity Profile Line 1334 used in Pre-blast 34  



www.manaraa.com

 

A.532: Shot Gather Line 1335 used in Pre-blast 34  



www.manaraa.com

 

A.533: Dispersion Curve Line 1335 used in Pre-blast 34  



www.manaraa.com

 

A.534: Velocity Profile Line 1335 used in Pre-blast 34  



www.manaraa.com

 

A.535: Shot Gather Line 1336 used in Post-blast 30 and Pre-blast 34  



www.manaraa.com

 

A.536: Dispersion Curve Line 1336 used in Post-blast 30 and Pre-blast 34  



www.manaraa.com

 

A.537: Velocity Profile Line 1336 used in Post-blast 30 and Pre-blast 34  



www.manaraa.com

 

A.538: Shot Gather Line 1337 used in Post-blast 30 and Pre-blast 34  



www.manaraa.com

 

A.539: Dispersion Curve Line 1337 used in Post-blast 30 and Pre-blast 34  



www.manaraa.com

 

A.540: Velocity Profile Line 1337 used in Post-blast 30 and Pre-blast 34  



www.manaraa.com

 

A.541: Shot Gather Line 1340 used in Post-blast 29, Post-blast 30 and Pre-blast 33  



www.manaraa.com

 

A.542: Dispersion Curve Line 1340 used in Post-blast 29, Post-blast 30 and Pre-blast 33  



www.manaraa.com

 

A.543: Velocity Profile Line 1340 used in Post-blast 29, Post-blast 30 and Pre-blast 33  



www.manaraa.com

 

A.544: Shot Gather Line 1341 used in Post-blast 29, Post-blast 30 and Pre-blast 33  



www.manaraa.com

 

A.545: Dispersion Curve Line 1341 used in Post-blast 29, Post-blast 30 and Pre-blast 33  



www.manaraa.com

 

A.546: Velocity Profile Line 1341 used in Post-blast 29, Post-blast 30 and Pre-blast 33  



www.manaraa.com

 

A.547: Shot Gather Line 1342 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.548: Dispersion Curve Line 1342 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.549: Velocity Profile Line 1342 used in Post-blast 29 and Pre-blast 33  



www.manaraa.com

 

A.550: Shot Gather Line 1343 used in Post-blast 29, Pre-blast 33 and Pre-blast 34  



www.manaraa.com

 

A.551: Dispersion Curve Line 1343 used in Post-blast 29, Pre-blast 33 and Pre-blast 34  



www.manaraa.com

 

A.552: Velocity Profile Line 1343 used in Post-blast 29, Pre-blast 33 and Pre-blast 34  



www.manaraa.com

 

A.553: Shot Gather Line 1344 used in Post-blast 31 



www.manaraa.com

 

A.554: Dispersion Curve Line 1344 used in Post-blast 31 



www.manaraa.com

 

A.555: Velocity Profile Line 1344 used in Post-blast 31 



www.manaraa.com

 

A.556: Shot Gather Line 1345 used in Post-blast 31 



www.manaraa.com

 

A.557: Dispersion Curve Line 1345 used in Post-blast 31 



www.manaraa.com

 

A.558: Velocity Profile Line 1345 used in Post-blast 31 



www.manaraa.com

 

A.559: Shot Gather Line 1346 used in Post-blast 31 



www.manaraa.com

 

A.560: Dispersion Curve Line 1346 used in Post-blast 31 



www.manaraa.com

 

A.561: Velocity Profile Line 1346 used in Post-blast 31 



www.manaraa.com

 

A.562: Shot Gather Line 1349 used in Post-blast 32 



www.manaraa.com

 

A.563: Dispersion Curve Line 1349 used in Post-blast 32 



www.manaraa.com

 

A.564: Velocity Profile Line 1349 used in Post-blast 32 



www.manaraa.com

 

A.565: Shot Gather Line 1350 used in Post-blast 32 



www.manaraa.com

 

A.566: Dispersion Curve Line 1350 used in Post-blast 32 



www.manaraa.com

 

A.567: Velocity Profile Line 1350 used in Post-blast 32 



www.manaraa.com

 

A.568: Shot Gather Line 1351 used in Post-blast 32 



www.manaraa.com

 

A.569: Dispersion Curve Line 1351 used in Post-blast 32 



www.manaraa.com

 

A.570: Velocity Profile Line 1351 used in Post-blast 32 



www.manaraa.com

 

A.571: Shot Gather Line 1352 used in Post-blast 31 and Post-blast 32 



www.manaraa.com
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